• Title/Summary/Keyword: Elastoplastic Structural Analysis

Search Result 54, Processing Time 0.029 seconds

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

Shake table test of Y-shaped eccentrically braced frames fabricated with high-strength steel

  • Lian, Ming;Su, Mingzhou
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.501-513
    • /
    • 2017
  • To investigate the seismic performance of Y-shaped eccentrically braced frames fabricated with high-strength steel (Y-HSS-EBFs), a shake table test of a 1:2 scaled three-story Y-HSS-EBF specimen was performed. The input wave for the shake table test was generated by the ground motions of El Centro, Taft, and Lanzhou waves. The dynamic properties, acceleration, displacement, and strain responses were obtained from the test specimen and compared with previous test results. In addition, a finite element model of the test specimen was established using the SAP2000 software. Results from the numerical analysis were compared with the test specimen results. During the shake table test, the specimen exhibited sufficient overall structural stiffness and safety but suffered some localized damage. The lateral stiffness of the structure degenerated during the high seismic intensity earthquake. The maximum elastic and elastoplastic interstory drift of the test specimen for different peak ground accelerations were 1/872 and 1/71, respectively. During the high seismic intensity earthquake, the links of the test specimen entered the plastic stage to dissipate the earthquake energy, while other structural members remained in the elastic stage. The Y-HSS-EBF is a safe, dual system with reliable seismic performance. The numerical analysis results were in useful agreement with the test results. This finding indicated that the finite element model in SAP2000 provided a very accurate prediction of the Y-HSS-EBF structure's behavior during the seismic loadings.

A numerical analysis of the large deflection of an elastoplastic cantilever

  • Wang, B.;Lu, G.;Yu, T.X.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 1995
  • A simple numerical method is applied to calculate the large deflection of a cantilever beam under an elastic-plastic deformation by dividing the deformed axis into a number of small segments. Assuming that each segment can be approximated as a circular arc, the method allows large deflections and plastic deformation to be analyzed. The main interests are the load-deflection relationship, curvature distribution along the beam and the length of the plastic region. The method is proved to be easy and particularly versatile. Comparisons with other studies are given.

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

A reliability-based fragility assessment method for seismic pounding between nonlinear buildings

  • Liu, Pei;Zhu, Hai-Xin;Fan, Peng-Peng;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.19-35
    • /
    • 2021
  • Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.

Discrete Optimum Design of the Strut Supported Temporary Structures (버팀보지지 가시설구조물의 이산화 최적설계)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • This study is to develop the structure analysis and optimization algorithm of the strut supported temporary structure for underground constructions. Developed algorithm performs the analysis and the optimization of each strut, wale, and H pile of temporary structures separately. The design variables of nonlinear optimization consist of the cross-sections of temporary structures such as strut, wale, and H pile and the solution of the nonlinear programming is searched using for the method of successive unconstranint minimization technique. The weight of the structure is used for the object function of nonlinear programming. the constraints are derived from the specification of the temporary structures as compressive axial, bending, shear, composite stress and serviceability. The structural analysis is performed based on the elastoplastic beam theory. This developed program can be used to evaluate the applicability, convergence, and effectiveness of the temporary structures.

  • PDF

A Method of Measuring the Plastic Properties of Materials using Spherical Indentation (Spherical Indentation 실험을 이용한 재료 소성 물성치 측정방법)

  • Li, Guanghe;Kang, Yoon-Sik;Xi, Chen;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • In this paper, an efficient algorithm is established in order to estimate the plastic properties of power-law hardening bulk specimen materials with one simple spherical indentation impression test. This work is based on a new formulation of representative strain and, therefore, compare to the preceding approaches the fitting parameters are significantly reduced. Moreover, the new definition of representative strain endowed more physical meaning to the representative strain. In order to verify the reliability of the reverse analysis, we have studied a broad set of materials whose property ranges cover essentially all engineering metals and alloys. Based on the indentation force-displacement P-${\delta}$ curves obtained from numerical simulations, the characteristics of the indentation response and material elastoplastic properties are bridged via explicit functions. Next, through the procedure of reverse analysis the yield stress and power-law hardening exponent of bulk specimen materials can be determined. Finally, good agreement between the result from reverse analysis and initial input data from experiment can be observed.

Elasto-Plastic Analysis of Underground Openings Considering the Effect of Excavation (굴착영향을 고려한 지하공동의 탄소성해석)

  • 최규섭;김대홍;황신일;심재구
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.225-234
    • /
    • 1998
  • The behavior of the underground opening depends mainly on the magnitude of the initial stress existing before excavation and on the stress redistribution due to the excavation. In the case of elasto-plastic materials such as rock mass, as the structural behavior of surrounded opening due to excavation depends on the stress path, methods and sequence of excavation have influences on the results of numerical analysis. Therefore, in order to design underground openings with large cross-section such as underground nuclear power plants, radioactive waste disposal cavems, oil storage caverns, and so on more reasonably it is desirable to consider the effect of the excavation sequence in the analysis. In this paper, the underground structure is analyzed using the finite element method and the distinct element methods with a view to review the the effect of the excavation sequence. Based on the results of the analysis the followings are discussed : influence of excavation shape and sequence, effect of structural reinforcements, influence of multi caverns.

  • PDF