A Method of Measuring the Plastic Properties of Materials using Spherical Indentation

Spherical Indentation 실험을 이용한 재료 소성 물성치 측정방법

  • 이광하 (한양대학교 건설환경공학과) ;
  • 강윤식 (한양대학교 건설환경공학과) ;
  • ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2010.05.28
  • Accepted : 2010.08.10
  • Published : 2010.08.31

Abstract

In this paper, an efficient algorithm is established in order to estimate the plastic properties of power-law hardening bulk specimen materials with one simple spherical indentation impression test. This work is based on a new formulation of representative strain and, therefore, compare to the preceding approaches the fitting parameters are significantly reduced. Moreover, the new definition of representative strain endowed more physical meaning to the representative strain. In order to verify the reliability of the reverse analysis, we have studied a broad set of materials whose property ranges cover essentially all engineering metals and alloys. Based on the indentation force-displacement P-${\delta}$ curves obtained from numerical simulations, the characteristics of the indentation response and material elastoplastic properties are bridged via explicit functions. Next, through the procedure of reverse analysis the yield stress and power-law hardening exponent of bulk specimen materials can be determined. Finally, good agreement between the result from reverse analysis and initial input data from experiment can be observed.

본 논문에서는 단 한번 만의 간단한 구형 인덴테이션 임프레션 실험을 통하여 재료 소성 물성치를 측정함에 있어서 효율적인 알고리즘이 개발되었다. 본 논문에서는 레프리젠터티브 스트레인의 새로운 정의를 기반으로 연구가 수행되어 예전의 연구와 비교할 때 상당한 량의 피팅 매개변수의 개수를 줄이게 됨으로서 계산 량이 대폭 줄어들면서 연구가 쉽게 진행될 수 있었다. 또한 레프리젠터티브 스트레인에 대한 새로운 정의는 보다 명확한 물리적 임의를 부여하였다. 역 해석의 신뢰성을 증명하기 위하여 본 논문에서는 거의 모든 공학적 금속과 합금이 포함되는 재료 세트들을 사용하여 해석을 진행하였다. 수치 해석 모델링을 통하여 얻은 P-${\delta}$ 그래프를 바탕으로 하여 인덴테이션 반응 특성과 재료의 탄소성 물성치가 양 함수에 의하여 연계되었고, 역 해석방법을 적용시켜 재료의 항복응력과 power-law 경화 지수가 얻어진다. 마지막으로, 역 해석을 통하여 얻어진 재료 물성 치와 실제 실험을 통하여 얻어진 재료 물성치가 좋은 일치성을 가진다는 것을 보여준다.

Keywords

References

  1. ABAQUS 6.9-1 user's manual.
  2. Ahn, J.H., Kwon, D. (2001) Derivation of Plastic Stress-Strain Relationship from Ball Indentations: Examination of Strain Definition and Pileup Effect, Materials Research Society, 16(11), pp.3170-3178. https://doi.org/10.1557/JMR.2001.0437
  3. Cao, Y.P., Lu, J. (2004) A New Method to Extract the Plastic Properties of Metal Materials from an Instrumented Spherical Indentation Loading Curve, Acta Materialia, 52(13), pp.4023-4032. https://doi.org/10.1016/j.actamat.2004.05.018
  4. Cao, Y.P., Qian, X., Huber, N. (2007) Spherical Indentation Into Elastoplastic Materials: Indentation- Response Based Definitions of the Representative Strain, Materials Science and Engineering: A, 454-455, pp.1-13. https://doi.org/10.1016/j.msea.2007.01.002
  5. Chen, X., Hutchinson, J.W., Evans, A.G. (2005) The Mechanics of Indentation Induced Lateral Cracking, Journal of the American Ceramic Society, 88(5), pp.1233-1238. https://doi.org/10.1111/j.1551-2916.2005.00281.x
  6. Chen, X., Ogasawara, N., Zhao, M., Chiba, N. (2007) On the Uniqueness of Measuring Elastoplastic Properties from Indentation: the Indistinguishable Mystical Materials, Journal of the Mechanics and Physics of Solids, 55(8), pp.1618-1660. https://doi.org/10.1016/j.jmps.2007.01.010
  7. Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S. (2001) Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Materialia, 49(19), pp.3899-3918. https://doi.org/10.1016/S1359-6454(01)00295-6
  8. Fischer-Cripps, A.C. (2001) Use of Combined Elastic Modulus in the Analysis of Depth-Sensing Indentation Data, Materials Research Society, 16(11), pp.3050-3052. https://doi.org/10.1557/JMR.2001.0421
  9. Fleck, N.A., Hutchinson, J.W. (1997) Strain Gradient Plasticity, Advances in Applied Mechanics, 33, pp.295. https://doi.org/10.1016/S0065-2156(08)70388-0
  10. Huber, N., Tsakmakis, Ch. (1999) Determination of Constitutive Properties from Spherical Indentation Data Using Neural Networks. Part I: the case of pure kinematic hardening in plasticity laws, Journal of the Mechanics and Physics of Solids, 47(7), pp.1569-1588. https://doi.org/10.1016/S0022-5096(98)00109-4
  11. Ogasawara, N., Chiba, N., Chen, X. (2005) Representative Strain of Indentation Analysis. Materials Research Society, 20(8), pp.2225-2234. https://doi.org/10.1557/JMR.2005.0280
  12. Ogasawara, N., Chiba, N., Chen, X. (2006) Limit Analysis-Based Approach to Determine the Material Plastic Properties with Conical Indentation, Materials Research Society, 21(4), pp.947-957. https://doi.org/10.1557/jmr.2006.0108
  13. Ogasawara, N., Chiba, N., Chen, X. (2009) A Simple Framework of Spherical Indentation for Measuring Elastoplastic Properties, Mechanics of Materials, 41(9), pp.1025-1033. https://doi.org/10.1016/j.mechmat.2009.04.010
  14. Ogasawara, N., Chiba, N., Zhao, M., Chen, X. (2007) Measuring Material Plastic Properties with Optimized Representative Strain-based Indentation Technique, Journal of Solid Mechanics and Materials Engineering, 1(7), pp.895-906. https://doi.org/10.1299/jmmp.1.895
  15. Oliver, W.C., Pharr, G.M. (1992) An Improved Technique for Determining Hardness and Elastic- Modulus Using Load and Displacement Sensing Indentation Experiments, Materials Research Society, 7(6), pp.1564-1583. https://doi.org/10.1557/JMR.1992.1564
  16. Taljat, B., Zacharia, T., Kosel, F. (1998) New Analytical Procedure to Determine Stress-Strain Curve from Spherical Indentation Data, International Journal of Solids and Structures, 35(33), pp.4411-4426. https://doi.org/10.1016/S0020-7683(97)00249-7
  17. Zhao, M., Ogasawara, N., Chiba, N., Chen, X. (2006) A New Approach to Measure the Elastic- Plastic Properties of Bulk Materials Using Spherical Indentation, Acta Materialia, 54(1), pp.23-32. https://doi.org/10.1016/j.actamat.2005.08.020