• Title/Summary/Keyword: Elastomeric adhesive

Search Result 9, Processing Time 0.023 seconds

Athermal Elastomeric Lens Mount for Space Optics

  • Kihm, Hag-Yong;Yang, Ho-Soon;Moon, Il-Kweon;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • We investigated the optimum adhesive thickness for athermalizing an elastomeric lens mount in our space optics application. Theoretical results were compared with finite element solutions using two different models; discrete circular pads and discrete circular pads with columns filling the insertion holes reflecting the reality. A noticeable difference between their optimal thicknesses was observed, and physical interpretation revealed the uncertainty of prevailing athermal equations. A pilot sample was made to check our results and thermo-optical stress was assessed using an interferometer after isothermal load. This study presented insight into preliminary design guidance in elastomeric lens mounting.

TENSILE BOND STRENGTH BETWEEN ELASTOMERIC IMPRESSION MATERIALS AND TRAY RESINS DEPENDING ON THE THICKNESS OF THE TRAY ADHESIVE

  • Kim, Tae-Won;Moon, Hong-Seok;Lee, Keun-Woo;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.699-711
    • /
    • 2006
  • Statement of problem. Elastomeric impression materials have been widely used to obtain an accurate impression. However there have not been enough studies on the influence of the thickness of the tray adhesives on the bonding strength between the trays and the elastomeric impression materials. Purpose. In order to understand the relationship between the thickness of the tray adhesive and the tensile bond strength and to suggest the thickness at which the bonding strength is strongest, tensile bond strength related to the thickness of adhesives of 3 different elastomeric impression materials were tested. Materials and methods. 3 impression materials, $Permlastic^{(R)}$. Regular Set(Kerr Corp., Romulus, Michigan, U.S.A.), $Impregum^{TM}$ $Penta^{TM}$(3M ESPE, Seefeld, Germany), and Aquasil Ultra Monophase Regular Set Smart Wetting.(Dentsply Caulk, Milford, Delaware, U.S.A.), were used in this study, and tray adhesives from the same manufacturers of the impression materials were used, which were Rubber Base Adhesive, Polyether Adhesive, and Silfix, respectively. The tray specimens were prepared by autopolymerizing the tray material(Instant Tray Mix, Lang, Wheeling, Illinois, U.S.A.), and a PVC pipe was used to house the impression material. In group A, tray adhesives were applied in multiple thin layers of 1 to 5 and in group B, adhesives were applied only once, in the thickness equivalent to several applications. Lightness($L^*$) of the adhesion surface was measured with a spectrophotometer(CM-3500d, Konica Minolta, Sakai, Osaka, Japan). The tensile bond strength of the elastomeric impression material and the tray resin was measured with universal materials testing machines(Instron, Model 3366, Instron Corp, Nowood, Massachusetts, U.S.A.). A formula between the number of adhesive application layers and the lightness of the adhesion surface was deduced in group A, and the number of adhesive layers in group B was estimated by applying the lightness($L^*$) to the deduced formula. Results. 1. In group A, a statistically significant increase in tensile bond strength appeared when the number of application layers increased from 1 to 2 and from 4 to 5, and no significant difference was present between 2, 3, and 4 layers in Permlastic. In Impregum, the tensile bond strength was significantly increased when the number of adhesive layers increased from 1 to 3, but no significant difference after 3 layers. In Aquasil, the tensile bond strength significantly increased as the number of application layers increased up to 4 but showed no significant difference between 4 and 5. 2. In group B, the tensile bond strength was decreased when the thickness of the adhesive increased in Permlastic. Impregum showed an increased tensile bond strength when the thickness of the adhesive was increased. In Aquasil, the tensile bond strength increased as the number of adhesive application layers increased up to approximately 2.5 layers but it sharply decreased after approximately 4.5. Conclusion. From the study, the common idea that it is better to apply a thin and single coat of tray adhesive needs correction in more detailed ways, and instructions on some of the tray adhesives should be reconsidered since there were several cases in which the tensile bond strength increased according to the increase in the thickness of the adhesives.

Tensile Adhesive Characteristics of Waterproofing System for Concrete Bridge Decks (바닥판 조건에 따른 교면방수 시스템의 인장접착 특성)

  • 이병덕;박성기;심재원;정해문;김광우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.373-378
    • /
    • 2002
  • The waterproofing system's performance is known to show a determining by complex interaction of material factors, design details, and the qualify of construction, and the waterproofing integrity of waterproofing membranes is determined by the bond to the deck and the amount of damage to the waterproofing membrane. In this research, the basic properties of waterproofing membranes on market and the tensile adhesive characteristics of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. As a results of tensile adhesive strength of waterproofing system, tensile strength is decrease with surface moisture contents except for inorganic-elastomeric liquid waterproofing membrane, and increase with strength of deck slab. Also tensile adhesive strength is generally increase in case of moisture curing of specimen because of pore structure and surface leveling. The after asphalt concrete paving tends to increase more than before those. The results of the liquid waterproofing membranes are upside-down, and the more concrete has strength, the more strength of tensile adhesive increase. The ambient temperature and the rolling temperature of asphalt concrete when application of the waterproofing membrane has considerable influence on the performance of waterproofing system.

  • PDF

Drying time of tray adhesive for adequate tensile bond strength between polyvinylsiloxane impression and tray resin material

  • Yi, Myong-Hee;Shim, Joon-Sung;Lee, Keun-Woo;Chung, Moon-Kyu
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.63-67
    • /
    • 2009
  • STATEMENT OF PROBLEM. Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. PURPOSE. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. MATERIAL AND METHODS. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material(Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. RESULTS. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile bonding strength to Silfix-Imprint II at all drying periods. CONCLUSION. Significant increase in tensile bonding strength with Silfix-Aquasil and VPS Tray adhesive-Imprint II combination until 10 and 15 minutes respectively. Tray adhesive-impression material combination from the same company presented higher tensile bonding strength at all drying time intervals than when using tray adhesive-impression material of different manufactures.

Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength (EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향)

  • Lee, Jung-Joon;Song, Yu-Hyun;Lim, Sang-Kyun;Park, Dae-Soon;Sung, Ick-Kyung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.

Optimization Design of Dry Adhesion for Wall-Climbing Robot on Various Curvatures Based on Experiment (다양한 곡률에 안정적인 등반 로봇을 위한 건식 점착물질의 실험기반 설계변수 최적화)

  • Liu, Yanheng;Shin, Myeongseok;Seo, TaeWon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the results of a study on the optimal footpad design for vertical climbing on acrylic surfaces with various curvatures used Taguchi methods. For a climbing robot, the adhesion system plays an important role in the climbing process. Only an appropriate adhesion strength will prevent the robot from falling and allow it to climb normally. Therefore, the footpad is a significant parameter for a climbing robot and should be studied. Taguchi methods were used to obtain a robust optimal design, where the design variables were the flat tacky elastomeric shape, area, thickness, and foam thickness of the footpad. Experiments were conducted using acrylic surfaces with various curvatures. An optimized footpad was selected based on the results of the experiments and analysis, and the stability of the wall-climbing robot was verified.

Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique (Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작)

  • Park, Ji-Young;Gratton, Stephanie;Benjamin, Maynor;Lim, Jomg Sung;Desimone, Joseph
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.493-499
    • /
    • 2007
  • Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.

Evaluation of the Reaction-to-fire Performance of Pipe Insulation Material using Small Room Test (룸코너 시험을 이용한 배관용 보온재의 난연성능 분석)

  • Lim, Ohk Kun;Nam, Dong-gun;Jang, Hyo-Yeon
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • Reaction-to-fire performance of pipe insulation materials should be approved in accordance with KS standards prior to installing water-based suppression systems because several fire accidents are initiated from insulation materials around ceilings or concealed space. A small room test to evaluate the reaction-to-fire performance of the polyethylene foam and elastomeric pipe insulation materials was conducted according to ISO 20632. Different fire growth rate and heat release rate are observed depending on the materials and construction methods. In order to improve a fire safety, the reaction-to-fire performance of pipe insulation material needs to be subdivided with regard to the heat release rate and smoke generation. Furthermore, the characteristics of the applying space are also required to be considered. Subsidiary materials for installation process such as tape and adhesive are found to provide an adverse effect to maintain a fire safety.

EFFECT OF CONTAMINANTS ON THE PUTTY-WASH BOND STRENGTH IN TWO-STEP RELINE TECHNIQUE USING VINYL POLYSILOXANE IMPRESSION MATERIALS (Vinyl Polysiloxane 인상재를 이용한 이회 인상법에서 contaminants가 putty-wash 결합력에 미치는 영향)

  • Kim, Mu-Hyon;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.266-276
    • /
    • 1996
  • Numerous factors are known to affect the accuracy of elastomeric impression materials. Factor often overlooked is the quality of the bond between putty and wash during corrective reline impression technique. The putty-wash bond strength must be strong enough to over-come the local stress at putty-wash interface. It is not always possible to avoid saliva contamination in making corrective wash impres-sion. And putty preliminary impression material con be used as a template for provisional restoration. Human saliva and the residual monomer of autopolymerizing acrylic resin are thought to affect the bond strength and the failure type. This study examined the effect of contaminants like human saliva, and residual resin monomer on the putty-wash bond strength and the effectiveness of treatment. 1. Of the tested three brands of Vinyl Polysiloxane impession meterial, Express Exhibited the greatest bond strength followed by Eamix and Perfect showed the lowest putty-wah bond strength. 2. Coating the putty substrates with human saliva did not produce decreased failure load in all the breands of Vinyl Polysiloxane impression meterail. 3. Of the three brands of VPS impression material that were exposed to methhylmethacry-late resin(Jet), only the putty-wash bond strength of the Perfect group diminished signifi-cantly. Moreover, all the specimens from group C of Perfect exhibited adhesive failure. 4. Exposing the substrates to ethylmethacrylate resin(SNAP. diminished the putty-wash bond strength significantly. With Perfect and Examix, failure occurred cohesively through the light-body, whereas with Express, failure occurred adhesive-cohesively. 5. Removing approximately 1mm thickness of the contaminated putty interface was the most effective treatment in countering the undesirable effect caused by residual resin monomer. The putty-wash bond strength of the groups that were treated with 1mm even putty reduction was not significantly different from those of control groups. With Perfect and Examix, cleaning the specimens with gauze soaked in 70% isopropyl alcohol increased the putty-wash bond strength, but was not as effective as 1mm even reduction of contaminated putty substrates. With Express, 70% isoproryl alcohol treatment exhibi0ted comparable putty-wash bond strength to that of control group.

  • PDF