• Title/Summary/Keyword: Elasto-plastic analysis

Search Result 666, Processing Time 0.027 seconds

A STUDY ON ELASTO-PLASTIC ANALYSIS OF SPHERICAL SHELL BY RIGID ELEMENT METHOD(I) - Theoretical Consideration on Elasto-Plastic Analysis of Spherical Shell - (강체요소법에 의한 구형쉘의 탄소성해석에 관한 연구( I ) - 구형쉘의 탄소성 해석에 관한 이론적 고찰 -)

  • 권택진;한상율;서삼열;박강근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.18-23
    • /
    • 1988
  • This study on the elasto-plastic analysis of spherical shell by rigia element method is classified into two parts : (1) theoretical consideration on elasto-plastic analysis of spherical shell, (2) elastic and elasto-plastic analysis of spherical shell with the open stiff ring. In 1982, Y. Tsuboi proposed the new analytical method which is called the rigid element method, for analyzing the elasto-plastic behavior of wall-type precast concrete structures by applying the concepts of rigid bodies-sprins model (i.e., when structures reach their ultimate state of leading, they may be yield, collapsed ana crushed into pieces, and each part or piece of structures mar move like a rigid body.). In this paper, for improvement and expansion this rigid element method, it is proposed the adaptation equation of rectangular-shaped spherical element and rectangular-shaped spherical bending element developed by present authors, and the analytical procedure for the elastic and the elasto-plastic increment method of structures.

  • PDF

Elasto-plastic Finite Element Analysis of Hardening Materials Using Simplified Method (단순화법을 이용한 소성 경화재료에서의 탄.소성 구조물의 유한요소해석)

  • Kim, Byeong-Sam;Park, Kyoung-Woo;Sung, Ki-Suk;Yu, Geun-Yeal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.596-601
    • /
    • 2007
  • A simplified finite element analysis method is proposed to calculate elasto-plastic responses of general hardening materials. The method provides an effective tool to calculate structural elasto-plastic responses. Numerical examples have demonstrated that its computational efficiency is very much higher than that of the incremental elasto-plastic finite element analysis, and computational results are accurate enough to meet the need of engineering practice. Compared with the general elasto-plastic incremental finite element analysis, the proposed method can avoid the incremental iteration of nodal displacements and the constitutive equation integration at each Gauss integral point, and computational results are accurate enough to meet the need of engineering practice.

  • PDF

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Investigation of seismic responses of reactor vessel and internals for beyond-design basis earthquake using elasto-plastic time history analysis

  • Lee, Sang-Jeong;Lee, Eun-ho;Lee, Changkyun;Park, No-Cheol;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.988-1003
    • /
    • 2021
  • Existing elastic analysis methods cannot be adhered to in order to assess the structural integrity of a reactor vessel and internals for a beyond design basis earthquake. Elasto-plastic analysis methods are required, and the factors that affect the elasto-plastic behavior of reactor materials should be taken into account. In this study, a material behavior model was developed that considers the irradiation embrittlement effect, which affects the elasto-plastic behavior of the reactor material. This was used to perform the elasto-plastic time history analyses of the reactor vessel and its internals for beyond design basis earthquake. For this investigation, appropriate beyond design basis earthquakes and reliable finite element models were used. Based on the analysis results, consideration was given to the load reduction effect and the margin change. These were transferred to the internals due to the plastic deformation of the reactor vessel.

Domain Decomposition Method for Elasto-Plastic Problem (탄소성문제 적용을 위한 영역분할법)

  • Bae, Byung-Kyu;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3384-3390
    • /
    • 2011
  • This paper describes a domain decomposition method of parallel finite element analysis for elasto-plastic structural problems. As a parallel numeral algorithm for the finite element analysis, the authors have utilized the domain decomposition method combined with an iterative solver such as the conjugate gradient method. Here the domain decomposition method algorithm was applied directly to elasto-plastic problem. The present system was successfully applied to three-dimensional elasto-plastic structural problems.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage(the 2nd Report) (등방성손상을 고려한 탄소성 대변형 무제의 유한요소해석(제2보))

  • 이종원
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2000
  • this paper was concentrated on the finite element formulation to solve boundary value problems by using the isotropic elasto-plastic damage constitutive model proposed previously(Noh, 2000) The plastic damage of ductile materials is generally accompanied by large plasticdeformation and strain. So nonlinearity problems induced by large deformation large rotation and large strain behaviors were dealt with using the nonlinear kinematics of elasto-plastic deformations based on the continuum mechanics. The elasto-plastic damage constitutive model was applied to the nonlinear finite element formulation process of Shin et al(1997) and an improved analysis model considering the all nonlinearities of structural behaviors is proposed. Finally to investigate the applicability and validity of the numerical model some numerial examples were considered.

  • PDF

Evaluation of Computerized Methods for Stepwise Underground Excavation and Support System (지하 터파기 버팀시스템의 전산해석 사례 및 평가)

  • 장찬수;우홍기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.289-311
    • /
    • 1991
  • Analysis of supported excavation system by Elasto-Plastic Isoparametric Finite Element Method and Elasto-Plastic Beam Method have been conducted for the simulation of stepwise underground excavation. Conventional methods, fixed Supported Beam and Spring Supported Beam method, also have been examined and compared with the results of elasto-plastic beam method and field data. Except unavoidable result of upward ground settlement near the top of retaining wall and relatively high bending moment of wall at each excavation level, satisfactory results have been derived using elasto-plastic isopara metric finite element method. The results from elasto-plastic beam analysis program, developed by the author, are proved to be fit field data in acceptable variance as shown in the paper. Displacement and bending moment, of the wall by conventional methods, both fixed supported beam and spring supported beam, are always underestimated than field data, and attention must be given that the diffence increases with deeper excavation depth and lower horizontal subgrade reaction of the ground.

  • PDF

A Study on the Thermo-elasto-plastic Analysis of Upset Forming (전기 업셋팅 가공시의 열탄소성 해석에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

Analysis of Elasto-Plastic Stress Waves by a Time-Discontinuous Variational Integrator of Hamiltonian (해밀토니안의 시간 불연속 변분적분기를 이용한 탄소성 응력파 해석)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.231-234
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves by a time discontinuous variational integrator based on Hamiltonian in order to more accurate results in one dimensional dynamic problem. The proposed algorithm adopts both time-discontinuous variational integrator and space-continuous Hamiltonian so as to capture discontinuities of stress waves. This study enables to preserve total mechanical energy such as internal energy, kinetic energy and dissipative energy due to plastic deformation for long integration time. Finite element analysis of elasto-plastic stress waves is carried out in order to demonstrate the accuracy of the proposed algorithm.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.