• Title/Summary/Keyword: Elastic-Plastic Toughness

Search Result 74, Processing Time 0.023 seconds

Evaluation for Fracture Toughness with Considering the Thermal Energy (열에너지를 고려한 파괴인성치 고찰)

  • 김정표;임창현;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • In the case of a crack propagation a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile tests were carried out using thermocouples to monitor the variation of temperature. The experimental results show that the temperature of specimen was increased $5.4^{\circ}C$ at static load condition. And the thermal effect is investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip is lower about 16.9% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

Effects of Thermal Aging on the Fracture Characteristic in the Dissimilar Welds (CF8M과 SA508 용접재의 열화에 따른 파괴특성 평가)

  • Woo, Seung-Wan;Kwon, Jae-Do;Choi, Sung-Jong;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.72-77
    • /
    • 2004
  • In a primary reactor cooling system(RCS), a dissimilar weld zone exists between cast stainless steel(CF8M) in a pipe and low-alloy steel(SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time to a reactor operating temperature between 290 and $330^{\circ}C$, while no effect is observed in SA508 cl.3. The specimens are prepared by an artificially accelerated aging technique maintained for 300, 1800 and 3600 hrs at $430^{\circ}C$, respectively. The specimens for elastic-plastic fracture toughness tests are prepared one type, which notch is created in the heat affected zone(HAZ) of CF8M. And, the specimens for fatigue crack growth tests are prepared in three classes, which notches are created at the center of deposited zone, the HAZ of CF8M, and the HAZ of SA508 cl.3. From the experiments, the J-integral values with the increase of aging time decrease, and the differences of the fatigue crack growth behaviors are relatively small in the three classes specimens.

  • PDF

A Study on Evaluation of J$_{IC}$ for SB41 Steel with Measured Bluntion Line (실측 둔화직선을 이용한 SB41 강의 J$_{IC}$평가에 관한 연구)

  • 허정원;오세욱;유재환;김득진;차재준
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.38-46
    • /
    • 1994
  • The method of JSME S001-83 and ASTM E813-87 have been adapted for evaluation of the elastic-plastic fracture toughness J sub(IC) of SB41 steel. This SB41 steel have the characteristics of low-stength CT specimens. The test results obtained have been considered and compared on the basis of resulted data from two kinds of methods(JSME S001-83, ASTM E813-87) and two kinds of specimen configurations(smooth, side-grooved). On the basis of results from consideration and comparison, the difficulties for its application were presented in case when the standard ASTM E813-87 method was employed for the measurement of J sub(IC) in SB41 steel. A modified method was applied for measuring J sub(IC) in SB41 steel that it used the blunting line real-measured by experiment instead of the standard blunting line theoretically determined, and the result from that procedure was analyzed and the usefulness of that method was examined and considered.

  • PDF

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M) (III) - Evaluation of Elastic-Plastic Fracture Toughness - (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (III) - 탄소성 파괴인성 평가 -)

  • Gwon, Jae-Do;In, Jae-Hyeon;Park, Jung-Cheol;Choe, Seong-Jong;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2405-2412
    • /
    • 2000
  • A cast stainless steel may experience an embrittlement when it is exposed to approximately 30$0^{\circ}C$ for long period. In the present investigation, The three classes of the thermally aged CF8M specimie n are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 300, 1800 and 3600hrs. at 43$0^{\circ}C$ respectively, the specimens are quenched in water to room temperature. Load versus load line displacement curves and J-R curves are obtained using the unloading compliance method. $J_{IC}$ values are obtained following ASTM E 813-87 and ASTM E 813-81 methods. In addition to these methods, JIC values are obtained using SZW(stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are $J_Q$=485.7 kJ/m$^2$ for virgin material, $J_{IC}$ of the degraded materials associated with 300, 1800 and 3600hrs are obtained 369.25 kJ/m$^2$, 311.02 kJ/m$^2$, 276.7 kJ/m$^2$, respectively. The results of SZW method are similar to those of the unloading compliance method. Through the elastic-plastic fracture toughness test, it is found that the value of $J_{IC}$ is decreased with increasing of the aging time. The results obtained through the investigation can provide reference data for a leak before break(LBB) of reactor coolant system of nuclear power plants.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding (완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분)

  • Lee, Hyung-Yil;Kim, Yong-Bom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

Variation of the fracture resistance curve with the change of a size in the specimen of reduced activation ferritic steel (JLF-1) (저방사화 철강재 (JLF-1)의 시험편 크기 변화에 따른 파괴저항곡선의 변화)

  • Kim, D.H.;Yoon, H.K.;Lee, S.P.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1240-1245
    • /
    • 2003
  • Reduced activation ferritic steel (JLF-1) is considered as a promising candidate material for blanket or first-wall structure of D-T fusion reactors. The fracture tests of fracture resistance curve (J-R curve) and $J_{IC}$ are desirable to investigate the exact fracture toughness of JLF-1 steel, since it has a high ductility. The fracture toughness of JLF-1 steel is affected by the configuration of test specimen such side groove, specimen thickness or specimen size. In this study, the fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The test results showed the standard specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen.

  • PDF

The Relationship between Fracture Toughness and Constraint Effect using Crack Tip Opening Displacement (균열선단 개구변위를 이용한 파괴인성 평가와 구속효과와의 관계)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong;Park, Jong-Seek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.91-92
    • /
    • 2006
  • For the CT specimen of 25.4mm thickness SS400 steel, the fracture toughness and the magnitude of constraint effect, $A_2$ on the non-linear elastoplastic fracture behaviors were experimentally estimated by crack tip opening displacement. In order to estimate constraint effect, displacement measurement position near crack front should be the existed within plastic region. But it is found that the displacement measurement positions by the ${\delta}_5$ method are in elastic region at crack growth initiation. Hence the estimate of constraint effect, $A_2$ by the ${\delta}_5$ method was not reliable.

  • PDF

A Study on the Dynamic Fracture Toughness of Welding Structural Steels by Instrumented Impact Testing (계장화 충격시험법에 의한 구조용강 용접부의 동적 파괴인성에 관한 연구)

  • 김헌주;김경민;윤의박
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.42-51
    • /
    • 1993
  • In this study, investigations were conducted in calculating parameters of elastic-plastic fracture mechanics using single specimen. The validity of these testing methods was judged by the confirmation of multiple specimen method of stop block test. The results were as follows: In order to measure a fracture toughness using the instrumented impact test, two general requirement must be considered; One, setting up proper impact velocity considered the effect of loading and the other, the necessity of low blow test for obtaining true energy by the compliance correction. It was possible to detect a crack initiation point by calculating the compliance changing rate from a load-defection curve. Criterion of a stable crack growth, $T_{mat}$ could be estimated by using key-curve method for a base metal. and combining Kaiser's rebound compliance with Paris-Hutchison's $T_{appl}$ equation for the brittled zone of welding heat affected.at affected.d.

  • PDF

Experimental Constraint Effect $A_{2}$, Values depending on Displacement according to measuring Positions near Crack Front. (균열선단 근방 변위측정 위치에 따른 구속효과 $A_{2}$)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool;Kim, Seong-Jong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.25-30
    • /
    • 2004
  • The magnitude of constraint effect $A_{2}$ values were experimentally estimated using displacement according to measuring positions on the non-linear elastic plastic fracture toughness estimate. For 25.4 mm thickness SS400 steel CT specimen, constraint effect $A_{2}$ values we re dependent on specimen configuration and on measured displacement near crack front. Commonly, Estimating constraint effect $A_{2}$ measuring position for displacement should be existed inside plastic region. Therefore, the ${\delta}_{5}$ method was not reliable for evaluation of constraint effect $A_{2}$ values because measuring position for displacement is in elastic region at crack growth initiation in this paper.

  • PDF