• 제목/요약/키워드: Elastic wall

검색결과 366건 처리시간 0.025초

원주방향 경사관통균열이 존재하는 두꺼운 배관의 탄성 균열열림변위 (Elastic Crack Opening Displacement of Slanted Circumferential Through-Wall Cracks in Thick-Walled Cylinder)

  • 한태송;허남수;심도준;김진수;이진호
    • 한국압력기기공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 2012
  • According to recent research on leak-rate estimates to assess rupture probabilities of nuclear piping which contains a circumferential surface/through-wall cracks due to PWSCC, i.e., xLPR (Extremely Low Probability of Rupture) program, it has been revealed that the use of crack shape with an idealized circumferential through-wall crack during actual crack growth can lead to overestimate of the leak-rate. Thus, for accurate estimation of the leak-rate during crack growth, the more realistic crack shape that can simulate the crack shape transition from surface crack to through-wall crack should be used. In this context, in the present study, the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder was proposed based on 3-dimensional elastic finite element fracture mechanics analyses. To propose the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder, the geometric variables affecting crack opening displacement, i.e., thickness of cylinder, reference inner crack length and slant crack ratio were systematically varied. In terms of loading conditions, axial tension, global bending moment and internal pressure were considered. The present results can be applied to calculate the leak-rate considering more realistic crack shape transition from surface crack to idealized through-wall crack, and can be expected to enhance current leak-rate estimation scheme, for instance, in xLPR program etc.

감육 배관의 다양한 보강 형태에 따른 이론적 등가 강성 검증 (Analytical Equivalent Stiffness Analysis for Various Reinforcements of Wall-thinned Pipe)

  • 장제훈;김지수;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.11-18
    • /
    • 2022
  • When wall-thinning in a pipe occurs during operation of nuclear power plant, reinforcement of the pipe needs to be performed. Accordingly, the structural response of the piping system due to introduction of the reinforcement may be re-evaluated. For elastic structural analysis of the piping system with the reinforced pipe using finite element (FE) analysis, the stiffness of the reinforced pipe is needed. In this study, the stiffness matrix of wall-thinned pipe with pad reinforcement or composite reinforcement is analytically derived. The validity of the proposed equations is checked by comparing with systematic finite element (FE) analysis results.

철근콘크리트 벽식 구조물에서 전단벽의 탄소성 해석용 모델화 방법의 검토 (On Modeling for Nonlinear Analysis of Shear Wall Element in Shear Wall Structures)

  • 전대한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.291-296
    • /
    • 2000
  • In this paper a relatively simple and reliable wall models are investigated, which are suitable to be efficiently incorporated in a practical nonlinear seismic analysis of reinforced concrete shear wall structural systems. Four types of analogous frames have been selected for the elastic stress analysis. Three types of macro-elements model which include wide-column model, truss model and Kabeyasawa model, are chosen for the use in nonlinear analysis. A numerical analysis is carried out for six stories plane coupled wall structure. Analysis results indicate that macro-elements wall model is effective and suitable for simulating stress in elastic analysis. In inelastic analysis, the yielding strength have little effect on different wall model, and the effect on post-yielding stiffness in story shear-drift relationship depend on force-deformation properties of macro-elements.

  • PDF

2D Finite element analysis of rectangular water tank with separator wall using direct coupling

  • Mandal, Kalyan Kumar;Maity, Damodar
    • Coupled systems mechanics
    • /
    • 제4권4호
    • /
    • pp.317-336
    • /
    • 2015
  • The present paper deals with the analysis of water tank with elastic separator wall. Both fluid and structure are discretized and modeled by eight node-elements. In the governing equations, pressure for the fluid domain and displacement for the separator wall are considered as nodal variables. A method namely, direct coupled for the analysis of water tank has been carried out in this study. In direct coupled approach, the solution of the fluid-structure system is accomplished by considering these as a single system. The hydrodynamic pressure on tank wall is presented for different lengths of tank. The results show that the magnitude of hydrodynamic pressure is quite large when the distances between the separator wall and tank wall are relatively closer and this is due to higher rotating tendency of fluid and the higher sloshed displacement at free surface.

파단전누설 해석 및 균열거동 평가를 위한 축방향 경사관통균열의 탄성 응력확대계수 및 균열열림변위 (Estimation of Elastic Fracture Mechanics Parameters for Slanted Axial Through-Wall Cracks for Leak-Before-Break and Crack Growth Analysis)

  • 허남수;심도준;최순;박근배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.725-726
    • /
    • 2008
  • This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed 3-dimensional (3-D) elastic finite element (FE) analyses. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the center of the crack were provided. These values were also tabulated for three selected points, i.e., the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed Leak-Before-Break analysis considering more realistic crack shape development.

  • PDF

두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산 (Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks)

  • 한태송;허남수
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1521-1528
    • /
    • 2012
  • 본 논문에서는 두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성응력확대계수 및 탄성 균열열림변위 해를 제시하였다. 이를 위해 배관의 두께, 기준균열길이, 경사관통균열 길이비를 체계적으로 변화시키며 3차원 탄성 유한요소해석을 수행하였다. 하중조건으로는 균열 성장에 영향을 미치는 내압을 고려하였다. 유한요소해석 결과를 바탕으로 두꺼운 배관에 존재하는 이상적인 축방향 관통균열과 경사관통균열에 대한 탄성응력확대계수와 탄성 균열열림변위를 균열선단 및 두께를 따라 제시하였다. 특히 응력확대 계수의 경우에는 이상적인 축방향 관통균열 결과로부터 쉽게 경사관통균열의 응력확대계수를 구할 수 있는 경사관통균열 보정계수를 제시하였다.

원주방향 관통균열 배관의 균열열림 평가에 미치는 압력유기굽힘의 구속효과 (Effect of Restraint of Pressure Induced Bending on Crack Opening Evaluation for Circumferential Through-Wall Cracked Pipe)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1873-1880
    • /
    • 2001
  • The effects of restraint of pressure induced bending(PIB) on crack opening for circumferential through-wall crack in a pipe were investigated. In this study, the elastic and elastic-plastic finite element analyses were performed to evaluate crack opening displacement(COD) for various restraint conditions and crack size. The results showed the restraint of PIB decreased crack opening for a given crack size and tensile stress, and the decrease in crack opening was considerable for large crack and short restraint length. A1so, the effect was more significant in tole results of elastic-plastic analysis compared with in the elastic analysis results. In the elastic-plastic analysis results, tole restraint effect was increased with increasing applied tensile stress corresponding to internal pressure. Additionally, the restraint effect on COD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and It depended on not total restraint length but shorter restraint length for non-symmetrically restrained.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향 (Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions)

  • 최주환;이종선;김찬중
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권4호
    • /
    • pp.363-372
    • /
    • 2000
  • 벽면운동과 임피던스 페이즈앵글(압력파와 유량파 사이의 시간차)이 벽면전단응력의 크기와 분포에 미치는 영향을 규명하기 위해 맥동유동하에 있는 직선 탄성혈관에서 전산유체해석을 수행하였다. 탄성을 갖는 직선혈관의 경우에는 벽면운동과 임피던스 페이즈앵글을 고려한 섭동해가 존재하는데, 이를 본 연구의 수치해와 비교함으로 수치해의 타당성을 입증하였다. 해석결과, 혈관의 벽면운동으로 인해 축방향 속도분포와 압력구배의 값에 어떤 추가분이 발생하는 것을 관찰하였다. 이러한 추가분에 의해 벽면전단응력(wall shear stress) 및 압력구배(pressure gradient)의 진폭(amplitude: time-varying component)은 감소하고 평균값(mean: time-averaged component)에도 변화를 보였는데 그 변화의 경향은 임피던스 페이즈앵글에 따라 매우 다른 모습을 보였다. 즉, 임피던스 페이즈앵글이 음의 값을 갖게 될 수록 벽면전단응력의 평균은 감소하고 진폭은 증가하는 경향을 보였다. $\pm$4%의 벽면운동이 있는 경우 대동맥에서 임피던스 페이즈앵글의 변화 가능범위인 0$^{\circ}$에서 -90$^{\circ}$로 페이즈 앵글을 감소시켰을 때 벽면전단응력의 평균값은 10.5% 감소하고 진폭은 17.5% 증가하였다. 그러므로 고혈압환자와 같이 음의 큰 페이즈앵글을 갖는 경우 벽면 전단응력의 시간에 따른 변화량(진폭/평균)이 상대적으로 커지므로 low and oscillatory shear stress 이론에 의하면 동맥경화에 더 민감하게 된다.

  • PDF

산화아연 나노선과 나노튜브의 구조 및 탄성계수에 관한 원자단위 연구 (Atomistic simulation of structural and elastic modulus of ZnO nanowires and nanotubes)

  • 문원하;최창환;황호정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.429-429
    • /
    • 2008
  • The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.

  • PDF