• Title/Summary/Keyword: Elastic plate method

Search Result 511, Processing Time 0.022 seconds

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Added effect of uncertain geometrical parameter on the response variability of Mindlin plate

  • Noh, Hyuk Chun;Choi, Chang Koon
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.477-493
    • /
    • 2005
  • In case of Mindlin plate, not only the bending deformation but also the shear behavior is allowed. While the bending and shear stiffness are given in the same order in terms of elastic modulus, they are in different order in case of plate thickness. Accordingly, bending and shear contributions have to be dealt with independently if the stochastic finite element analysis is performed on the Mindlin plate taking into account of the uncertain plate thickness. In this study, a formulation is suggested to give the response variability of Mindlin plate taking into account of the uncertainties in elastic modulus as well as in the thickness of plate, a geometrical parameter, and their correlation. The cubic function of thickness and the correlation between elastic modulus and thickness are incorporated into the formulation by means of the modified auto- and cross-correlation functions, which are constructed based on the general formula for n-th joint moment of random variables. To demonstrate the adequacy of the proposed formulation, a plate with various boundary conditions is taken as an example and the results are compared with those obtained by means of classical Monte Carlo simulation.

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout (압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF

An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

  • Lee Jae-Kon;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2224-2230
    • /
    • 2005
  • In this study, the validity of the Eshelby-type model for predicting the effective Young's modulus and in-plane Poisson's ratio of the 2-dimensional perforated plate has been investigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-type model are compared with those by finite element analysis. Whenever the ratio of the porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants predicted by finite element analysis are convergent regardless of the arrangement of the porosities. Under these conditions, the effective Young's moduli of the perforated plate can be predicted within the accuracy of $5\%$ by the Eshelby-type model, which overestimates and underestimates the effective Poisson's ratios by $10\%\;and\;6\%$ for the plates with periodically and non-periodically arranged porosities, respectively.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.570-570
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.70-76
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

  • PDF

Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation (탄성지지된 집중질량을 갖는 변단면 후판의 진동해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties

  • Lal, Achchhe;Singh, B.N.;Kumar, Rakesh
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.199-222
    • /
    • 2007
  • Composite laminated structures supported on elastic foundations are being increasingly used in a great variety of engineering applications. Composites exhibit larger dispersion in their material properties compared to the conventional materials due to large number of parameters associated with their manufacturing and fabrication processes. And also the dispersion in elastic foundation stiffness parameter is inherent due to inaccurate modeling and determination of elastic foundation properties in practice. For a better modeling of the material properties and foundation, these are treated as random variables. This paper deals with effects of randomness in material properties and foundation stiffness parameters on the free vibration response of laminated composite plate resting on an elastic foundation. A $C^0$ finite element method has been used for arriving at an eigen value problem. Higher order shear deformation theory has been used to model the displacement field. A mean centered first order perturbation technique has been employed to handle randomness in system properties for obtaining the stochastic characteristic of frequency response. It is observed that small amount of variations in random material properties and foundation stiffness parameters significantly affect the free vibration response of the laminated composite plate. The results have been compared with those available in the literature and an independent Monte Carlo simulation.

Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles

  • Taherifar, Reza;Mahmoudi, Maryam;Nasr Esfahani, Mohammad Hossein;Khuzani, Neda Ashrafi;Esfahani, Shabnam Nasr;Chinaei, Farhad
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.295-301
    • /
    • 2019
  • In this paper, buckling analyses of composite concrete plate reinforced by piezoelectric nanoparticles is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite concrete plate. The nano composite concrete plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of concrete plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of piezoelectric nanoparticles volume percent, geometrical parameters of concrete plate and elastic foundation on the buckling load are investigated. Results showed that with increasing Piezoelectric nanoparticles volume percent, the buckling load increases.