• 제목/요약/키워드: Elastic plate

검색결과 995건 처리시간 0.026초

유체에 잠긴 다공 원통형 쉘의 자유진동해석 (Free Vibration Analysis of Perforated Shell Submerged in Fluid)

  • 정명조;조종철
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.247-258
    • /
    • 2006
  • 물에 잠긴 다공 원통형 쉘의 경우 물에 잠긴 상태로 유한요소해석을 하기에는 거의 불가능하므로 등가물성치를 사용하여야 한다. 다공 평판의 경우 이에 대한 등가물성치를 ASME 코드에서 제시하고 있지만, 다공 원통형 쉘의 등가물성치에 대한 연구는 아직까지 수행된 적이 없다. 따라서 본 연구에서는 유한요소해석을 이용하여 다공 원통형 쉘의 동적 해석에 이용할 수 있는 등가물성치를 제안하였고 그 타당성을 검증하였다.

방파제를 고려한 초대형 부유식 해양구조물의 응답 (Hydroelastic Responses for a Very Large Floating Structure with a Breakwater)

  • 이호영;신현경;임춘규;김외현;강점문;윤명철
    • 대한조선학회논문집
    • /
    • 제38권2호
    • /
    • pp.26-32
    • /
    • 2001
  • 본 논문은 고정식 방파제를 포함한 초대형 부유식 해상공항의 파도 중에서 유탄성 응답을 계산하는 방법을 제시하였다. 방파제 효과를 고려한 방사문제와 산란문제를 해석하기 위하여 소오스-다이폴 분포법을 사용하였고, 구조물의 응답은 자유-자유 보의 고유 모드함수에 의한 모드 해석법을 사용하여 계산하였다. 계산 모델로 길이가 1000m의 해상공항 구조물을 도입하였고, 방파제의 효과를 살펴보기 위해 입사파의 주기, 강성, 방파제와 해상공항 사이의 간격을 변화시키면서 수직 응답 및 모우멘트 등을 계산하였다.

  • PDF

복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법 (Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.

광탄성법(光彈性法)에 의한 로터리 경운날의 파괴요인(破壞要因)에 대한 해석(解析) -정하중(靜荷重)에 의한 응력집중(應力集中)- (Analysis of the Breaking Factor of Rotary Blade by Photo elastic Method -A Stress Concentration by Static Load-)

  • 최상인;김진현;김창수;김재열
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.177-185
    • /
    • 1990
  • The break of rotary blade is occured from a stress concentration of the inside of blade by the outside impulsive load. In order to examine its inside stress and stress concentration of rotary blade, a epoxy plate which is suitable to applicate by photoelastic system is used to experiment. These results are summarized as follow. 1. Refer to the existence of bolt hole and a size of its of rotary blade, a stress concentration which cause the break of rotary blade is not exposed. 2. It is expected to be break to section of hold of rotary blade and the break of this is due to that there are concentrated by shearing force, bending moment and bending stress. 3. When the crack which caused from processing are set up to any location, the stress concentration taken to the creak point. 4. Without regard to the location of the reaction points of rotary blade, the bending stress which is greated than the bending moment is occured within about 6 em toward the center line of bolt hole and it was possible to break that section.

  • PDF

가변금형의 박판 성형공정 적용 연구 (Study on Application of Flexible Die to Sheet Metal Forming Process)

  • 허성찬;서영호;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

API 5LB강관의 고주파전기저항용접부에 관한 파괴인성 평가 (Evaluation of Fracture Toughness on High Frequency Electric Resistance Welded API 5LB Steel Pipe)

  • 오세욱;윤한기;안계원
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.127-137
    • /
    • 1987
  • The evaluation of the elastic-plastic fracture toughness $J_{1C}$ was performed on the center of weld metal(CWM), the heat affected zone (HAZ) and the base metal (BM) of API 5LB steel pipes welded by the high frequency electric resistance welding. The $J_{1C}$ was evaluated by the JSME R-Curve and JSME SZW methods using the smooth and side-grooved specimens. The results are as follows; (1) The $J_{1C}$ values by the SZW method are overestimated as compared with those by the R-curve method, because the micro-crack is formed as SZW increase with the deformation at SZ after initiation of the ductile crack. (2) The everage of $J_{1C}$ values by the the R-curve and the SZW methods in side-grooved specimens tended to decrease in comparison with smooth specimens 9.42% at CWM, 4.2% at HAZ, 23.2% at BM, respectively. (3) The boundary of the fatigue pre-crack, stretched zone, and dimple regions appeared more clearly in side-grooved specimens, for the slight change of SZW in the direction of the plate thickness, as compared with smooth specimens.

  • PDF

Wire-woven Bulk Kagome 의 파손 메커니즘 분석 (Analysis of Failure Mechanism for Wire-woven Bulk Kaogme)

  • 이병곤;최지은;강기주;전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

Fluid-structure coupling of concentric double FGM shells with different lengths

  • Moshkelgosha, Ehsan;Askari, Ehsan;Jeong, Kyeong-Hoon;Shafiee, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.231-244
    • /
    • 2017
  • The aim of this study is to develop a semi-analytical method to investigate fluid-structure coupling of concentric double shells with different lengths and elastic behaviours. Co-axial shells constitute a cylindrical circular container and a baffle submerged inside the stored fluid. The container shell is made of functionally graded materials with mechanical properties changing through its thickness continuously. The baffle made of steel is fixed along its top edge and submerged inside fluid such that its lower edge freely moves. The developed approach is verified using a commercial finite element computer code. Although the model is presented for a specific case in the present work, it can be generalized to investigate coupling of shell-plate structures via fluid. It is shown that the coupling between concentric shells occurs only when they vibrate in a same circumferential mode number, n. It is also revealed that the normalized vibration amplitude of the inner shell is about the same as that of the outer shell, for narrower radial gaps. Moreover, the natural frequencies of the fluid-coupled system gradually decrease and converge to the certain values as the gradient index increases.