References
- Amabili, M., Paidoussis, M.P. and Lakis, A.A. (1998), "Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom", J. Sound Vib., 213, 259-299. https://doi.org/10.1006/jsvi.1997.1481
- Askari, E. and Daneshmand, F. (2010), "Coupled vibration of cantilever cylindrical shells partially submerged in fluids with continuous, simply connected and non-convex domain", J. Sound Vib., 329(16), 3520-3536. https://doi.org/10.1016/j.jsv.2010.02.027
- Askari, E. and Jeong, K.H. (2010), "Hydroelastic vibration of a cantilever cylindrical shell partially submerged in a liquid", Ocean Eng., 37, 1027-1035. https://doi.org/10.1016/j.oceaneng.2010.03.016
- Askari, E., and Daneshmand, F. (2009), "Coupled vibration of a partially fluid-filled cylindrical container with a cylindrical internal body", J. Fluid. Struct., 25, 389-405. https://doi.org/10.1016/j.jfluidstructs.2008.07.003
- Askari, E., Daneshmand, F. and Amabili, M. (2011), "Coupled Vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves", J. Fluid. Struct., 27, 1049-1067. https://doi.org/10.1016/j.jfluidstructs.2011.04.010
- Askari, E., Daneshmand, F., Amabili, M., (2010), "Sloshing in a vertical circular cylindrical container with a vertical baffle", Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, 1047-1054.
- Askari, E., Jeong, K.H. and Amabili, M. (2013), "Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface", J. Sound Vib., 332, 3064-3085. https://doi.org/10.1016/j.jsv.2013.01.007
- Au-Yang, M.K. (1975), Free Vibration of Fluid-coupled Coaxial Cylinders of Different Lengths, NPGD-M-320, Babcock & Wilcox.
- Biswal, K.C. and Bhattacharyya, S.K. (2010), "Dynamic response of structure coupled with liquid sloshing in a laminated composite cylindrical tank with baffle", Finite Elem. Anal. Des., 46, 966-981. https://doi.org/10.1016/j.finel.2010.07.001
- Biswal, K.C., Bhattacharyya, S.K. and Sinha, P.K. (2004), "Dynamic response analysis of a fluid-filled cylindrical tank with annular baffle", J. Sound Vib., 274, 13-37. https://doi.org/10.1016/S0022-460X(03)00568-6
- Blevins, R.D. (1979), Formulas for Natural Frequency and Mode Shapes, Van Nostrand Reinhold Company, London.
- Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Threedimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46, 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
- Cho, J.R., Lee, H.W. and Kim, K.W. (2002), "Free vibration analysis of baffled liquid-storage tanks by the structuralacoustic finite element formulation", J. Sound Vib., 258(5), 847-866. https://doi.org/10.1006/jsvi.2002.5185
- Ebrahimian, M., Noorian, M.A. and Haddadpour, H. (2014), "Equivalent mechanical model of liquid sloshing in multibaffled containers", Eng. Anal. Bound. Elem., 47, 82-95. https://doi.org/10.1016/j.enganabound.2014.06.001
- Eftekhari, S.A. (2016), "Pressure-based and potential-based differential quadrature procedures for free vibration of circular plates in contact with fluid", Latin Am. J. Solid. Struct., 13(4), 1-22. https://doi.org/10.1590/1679-78251579
- Gavrilyuk, I., Lukovsky, I., Trotsenko, Y. and Timokh, A. (2006), "Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 1. Linear fundamental solutions", J. Eng. Math., 54, 71-88. https://doi.org/10.1007/s10665-005-9001-6
- Hasheminejad, S.M. and Rajabi, M. (2007), "Acoustic resonance scattering from a submerged functionally graded cylindrical shell", J. Sound Vib., 302, 208-228. https://doi.org/10.1016/j.jsv.2006.11.014
- Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34, 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008
- Iqbal, Z., Naeem, M.N., Sultana, N., Arshad, S.H. and Shah, A.G. (2009), "Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach", Appl. Math. Mech., 30(11), 1393-1404. https://doi.org/10.1007/s10483-009-1105-x
- Leissa, A.W. (1969), Vibration of Plates, NASA SP-160, U.S Government Printing Office, Washington, D C.
- Mitra, S. and Sinhamahapatra, K.P. (2007), "Slosh dynamics of liquid-filled containers with submerged components using pressure-based finite element method", J. Sound Vib., 304, 361-381. https://doi.org/10.1016/j.jsv.2007.03.014
- Morand, H.J.P. and Ohayon, R. (1995), Fluid-Structure Interaction, Applied Numerical Methods, Wiley, New York.
- Shafiee, A., Daneshmand, F., Askari, E. and Mahzon, M. (2014), "Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid", Struct. Eng. Mech., 50(1), 53-71. https://doi.org/10.12989/sem.2014.50.1.053
- Shen, H., Paidoussis, M.P., Wen, J., Yu, D. and Wen, X. (2014), "The beam-mode stability of periodic functionally-gradedmaterial shells conveying fluid", J. Sound Vib., 333, 2735-2749. https://doi.org/10.1016/j.jsv.2014.01.002
- Sheng, G.G. and Wang, X. (2008), "Thermo-mechanical vibration analysis of a functionally graded shell with flowing fluid", Eur. J. Mech. A/Solid., 27, 1075-1087. https://doi.org/10.1016/j.euromechsol.2008.02.003
- Soedel, W. (2003), Vibrations of Shells and Plates, Marcel Dekker, New York.
- Sofiyev, A.H. (2009), "The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure", Compos. Struct., 89, 356-366. https://doi.org/10.1016/j.compstruct.2008.08.010
- Sofiyev, A.H. (2010), "Dynamic response of an FGM cylindrical shell under moving loads", Compos. Struct., 93, 58-66. https://doi.org/10.1016/j.compstruct.2010.06.015
- Sofiyev, A.H. and Kuruoglu, V. (2015), "Dynamic instability of three-layered cylindrical shells containing an FGM interlayer", Thin Wall. Struct., 93, 10-21. https://doi.org/10.1016/j.tws.2015.03.006
- Virella, J.C., Godoy, L.A. and Suarez, L.E. (2006), "Fundamental modes of tank-liquid systems under motions", Eng. Struct., 28, 1450-1461. https://doi.org/10.1016/j.engstruct.2005.12.016
- Wali, M., Hentati, T., Jarraya, A. and Dammak, F. (2015), "Free vibration analysis of FGM shell structures with a discrete double directors shell element", Compos. Struct., 125, 295-303. https://doi.org/10.1016/j.compstruct.2015.02.032
- Wang, J., Zhou, D. and Liu, W. (2016), "Coupled response of liquid in a rigid cylindrical container equipped with an elastic annular baffle", Meccanica, 51, 2045-2058. https://doi.org/10.1007/s11012-015-0353-3
- Wang, J.D., Lo, S.H. and Zhou, D. (2012), "Liquid sloshing in rigid cylindrical container with multiple rigid annular baffles: Free vibration", J. Fluid. Struct., 34, 138-156. https://doi.org/10.1016/j.jfluidstructs.2012.06.006
- Wang, J.D., Lo, S.H. and Zhou, D. (2013), "Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: Lateral excitations", J. Fluid. Struct., 42, 421-436. https://doi.org/10.1016/j.jfluidstructs.2013.07.005
- Zhou, D., Wang, J.D. and Liu, W.Q., (2014), "Nonlinear free sloshing of liquid in rigid cylindrical container with a rigid annular baffle", Nonlin. Dyn., 78, 2557-2576. https://doi.org/10.1007/s11071-014-1610-z
- Zhu, F. (1995), "Rayleigh-Ritz method in coupled fluid-structure interacting systems and its applications", J. Sound Vib., 186, 543-550. https://doi.org/10.1006/jsvi.1995.0466
Cited by
- A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics vol.77, 2018, https://doi.org/10.1016/j.jmbbm.2017.10.005
- The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.439
- A mathematical approach to study fluid-coupled vibration of eccentric annular plates vol.98, pp.None, 2017, https://doi.org/10.1016/j.jfluidstructs.2020.103129
- Coupled vibration analysis of fluid-filled baffled tank equipped with Kirchhoff plate vol.520, pp.None, 2022, https://doi.org/10.1016/j.jsv.2021.116604