• Title/Summary/Keyword: Elastic force degradation

Search Result 15, Processing Time 0.024 seconds

Elastic force degradation of synthetic elastomeric chain (체인형 합성고무탄성재의 탄성력 감쇄)

  • HEO, Chang-Hyuck;SUNG, Jae-Hyun;KWON, Oh-Won;KYUNG, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.371-380
    • /
    • 2003
  • The purpose of this study was to evaluate the force degradation rate of synthetic elastomeric chains during space closing phase of orthodontic treatment. Two kinds of synthetic elastomeric chains(RMO, 3M) were selected which were commonly used In clinics. All of the samples were extended and tested for 4 weeks under the simulated intraoral condition. The results can be summarized as follows : 1. Time related residual force showed typical logarithm function. Residual force after 4 weeks was $41.2\~64.6\%$ of original force, and difference between two kinds of elastomeric chain existed. 2. Elastic force decreased greatly during first 10 minutes, so $20\~25\%$ of original force disappeared. After that, this decreasing tendency was diminished significantly, average rate of elastic force after 1 week to 4 weeks were $1.5\%$ demonstrating rather constant force. 3. Even though the same brand of elastomeric chiain was used, as extension rate of elastomeric chain increased, force degradation rate increased by decreasing of residual force.

A Study on Cyclic Deformation and Fatigue Phenomenon of Shape Memory Alloy (형상기억합금의 반복변형특성과 피로현상에 관한 연구)

  • 박영철;오세욱;허정원;이명렬
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1992
  • Recently, the robot actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. In general, such a SMA actuator necessitates a number of cyclic repeated motion, so that the investigation of gradual decrease of recovery force with repeated motion cycle as well as the prevention of such a degradation of shape memory effect(SME) are very important for the actual use of a robot actuator. However, such research and discussions about the degradation of SME are very few up to the present. Therefore, in this study, the characteristics of the cyclic deformation and degradation of SME of Ti-Ni alloy would be investigated and discussed in detail by current heat type fatigue tester, which is a newly designed fatigue tester by author. In addition, we will establish a new design concept for robot actuator from these result.

  • PDF

Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites (형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향)

  • 김희연;김경섭;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment (전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과)

  • Kim, In-Ho;Abegaz, Ruth A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.277-286
    • /
    • 2022
  • The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures

  • Han, Cheol-Min;Lih, Eugene;Choi, Seul-Ki;Bedair, Tarek M.;Lee, Young-Jae;Park, Wooram;Han, Dong Keun;Son, Jun Sik;Joung, Yoon Ki
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.396-406
    • /
    • 2018
  • In this study, a polydioxanone (PDO) and poly(L-lactic acid) (PLLA) sheath-core biphasic monofilament was designed to develop an esophageal stent with improved mechanical properties and controlled biodegradability. The radial force of PDO/PLLA sheath-core stent was 10.24 N, while that of PDO stent was 5.64 N. Deteriorations of tensile strength, elastic modulus and elongation during degradation test were also delayed on PDO/PLLA group. Hyaluronic acid-dopamine conjugate and $BaSO_4/PDO$ conjugate coating layers provided improved tissue adhesion strength and reasonable X-ray contrast, respectively. Taken all together, the sheath-core filaments with tissue adhesive and radiopaque properties will be useful in designing esophageal stents.