DOI QR코드

DOI QR Code

The Interactive Effect of Translational Drift and Torsional Deformation on Shear Force and Torsional Moment

전단력 및 비틀림 모멘트에 의한 병진 변형 및 비틀림 변형의 상호 작용 효과

  • Kim, In-Ho (Department of Civil Engineering, Kunsan National University) ;
  • Abegaz, Ruth A. (Renewable Energy Research Institute, Kunsan National University)
  • 김인호 (군산대학교 토목공학과) ;
  • 아베가즈 루스 알리 (군산대학교 신재생에너지연구센터)
  • Received : 2022.06.23
  • Accepted : 2022.07.27
  • Published : 2022.10.31

Abstract

The elastic and inelastic responses obtained from the experimental and analytical results of two RC building structures under the service level earthquake (SLE) and maximum considered earthquake (MCE) in Korea were used to weinvestigate the characteristics of the mechanisms resisting shear and torsional behavior in torsionally unbalanced structures. Equations representing the interactive effect of translational drift and torsional deformation on the shear force and torsional moment were proposed. Because there is no correlation in the behavior between elastic and inelastic forces and strains, the incremental shear forces and incremental torsional moments were analyzed in terms of their corresponding incremental drifts and incremental torsional deformations with respect to the yield, unloading, and reloading phases around the maximum edge-frame drift. In the elastic combination of the two dominant modes, the translational drift mainly contributes to the shear force, whereas the torsional deformation contributes significantly to the overall torsional moment. However, this phenomenon is mostly altered in the inelastic response such that the incremental translational drift contributes to both the incremental shear forces and incremental torsional moments. In addition, the given equation is used to account for all phenomena, such as the reduction in torsional eccentricity, degradation of torsional stiffness, and apparent energy generation in an inelastic response.

국내의 서비스 수준 지진(SLE)과 최대 고려 지진(MCE)의 두 RC 건물 구조물의 실험 및 해석 결과에서 얻은 탄성 및 비탄성 응답은 비틀림에 대한 전단 및 비틀림 거동에서 저항 메커니즘의 특성을 연구하는데 사용될 수 있다. 불균형 구조의 특성 연구에서는 전단력 및 비틀림 모멘트에 대한 병진 변형 및 비틀림 변형의 상호 작용 효과를 나타내는 방정식이 제안하였다. 탄성과 비탄성 거동에서 힘과 변형 사이에 상관 관계 유무가 다르기 때문에 증분 전단력과 증분 비틀림 모멘트를 최대 벽 프레임 변형을 중심으로 항복, 제하 및 재하중 단계로 구분하여 해당 증분 변형 및 증분 비틀림 변형 측면에서 해석을 수행하였다. 두 가지 주요 지배 모드의 탄성 조합에서 병진 변형은 주로 전단력에 기여하는 반면 비틀림 변형은 전체 비틀림 모멘트에 크게 기여한다. 그러나 비탄성 응답에서는 증분 병진 변형이 증분 전단력과 증분 비틀림 모멘트 모두에 기여하게 된다. 따라서 주어진 방정식을 이용하여 비탄성 응답에서 비틀림의 편심 감소, 비틀림 강성 저하 및 겉보기 에너지 생성과 같은 모든 현상들을 설명하였다.

Keywords

Acknowledgement

본 연구는 2020년도와 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2020R1I1A1A01073676, NRF-2021R1A6A1A0304518511)임.

References

  1. Ahn, S.K., Lee, D.G. (2001) Efficient Seismic Analysis of Building Structures with Eccentric Beams, J. Comput. Struct. Eng. Inst. Korea, 14(2), pp.203-211.
  2. American Society of Civil Engineers (ASCE) (2014) ASCE/SEI 41-13: Seismic Evaluation and Retrofit of Existing Buildings, Reston, VA.
  3. Anagnostopoulos, S.A., Kyrkos, M.T., Stathopoulos, K.G. (2015) Earthquake Induced Torsion in Buildings: Critical Review and State of the Art, Earthq. & Struct., 8(2), pp.305-377. https://doi.org/10.12989/eas.2015.8.2.305
  4. Architectural Institute of Korea (AIK) (2005) Korean Building Code, KBC 2005, Seoul, Korea. (in Korean)
  5. Architectural Institute of Korea (AIK) (2017) Korean Building Code, KBC 2016, Seoul, Korea. (in Korean)
  6. Center for Engineering Strong Motion Data (2012) Internet Data Report, http://www.strongmotioncenter.org/, CESMD. [Last accessed on June 2019].
  7. Chandler, A.M., Duan, X.N., Rutenberg, A. (1996) Seismic Torsional Response: Assumptions, Controversies and Research Progress, Eur. Earthq. Eng., 10(1), pp.37-51
  8. ETABS 2013 (2013) Building Analysis and Design, Computers and Structures Inc., Berkeley, CA, Software.
  9. Ha, T., Hong, S.G., Cho, B.H., Kim, D.J. (2019) Effective Assessment of Inelastic Torsional Deformation of Plan-Asymmetric Shear Wall Systems, Appl. Sci., 9(14), p.2814. https://doi.org/10.3390/app9142814
  10. International Code Council (IBC) (2012) International Building Code, IBC 2012.
  11. Jung, D.J. (2002) Torsional Behavior of Core Structures according to the Location of Reinforcement, J. Comput. Struct. Eng. Inst.Korea, 15(3), pp.545-555.
  12. Lee, H.S., Hwang, K.R. (2015) Torsion Design Implications From Shake-Table Responses of an RC Low-Rise Building Model Having Irregularities at the Ground Story, Earthq. Eng. & Struct. Dyn., 44, pp.907-927. https://doi.org/10.1002/eqe.2492
  13. Lee, H.S., Jung, D.W., Lee, K.B., Kim, H.C., Lee, K. (2011) Shake-Table Responses of a low-Rise RC Building Model Having Irregularities at First Story, Struct. Eng. & Mech., 40(4), pp.517-539. https://doi.org/10.12989/sem.2011.40.4.517
  14. Lee, H.S., Lee, K.B., Hwang, K.R., Cho, C.S. (2013) Shake-Table Responses of an RC Low-Rise Building Model Strengthened with Buckling Restrained Braces at Ground Story, Earthq. & Struct., 5(6), pp.703-731. https://doi.org/10.12989/eas.2013.5.6.703
  15. NGA Database (2012) http://www.peer.berkeley.edu/nga, PEER 2012. [Last accessed on June 2019].
  16. Rutenberg, A. (1992) Nonlinear Response of Asymmetric Building Structures and Seismic Codes: A State of the Art, Eur. Earthq. Eng., VI(2), pp.3-19.
  17. Stathopoulos, K.G., Anagnostopoulos, S.A. (2005) Inelastic Torsion of Multi-Storey Buildings under Earthquake Excitations, Earthq. Eng. & Struct. Dyn., 34(12), pp.1449-1465. https://doi.org/10.1002/eqe.486