• 제목/요약/키워드: Elastic Shock Absorber

검색결과 4건 처리시간 0.024초

비균질 지반위에 놓여있는 보의 고유진동수 (Natural Frequencies of a Beam on Inhomogeneous Foundation)

  • 김용철
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

경량 수직이착륙 무인기의 복합재료 스키드 착륙장치 최적설계 (Composite Skid Landing Gear Optimal Design for Light VTOL UAV)

  • 이정진;김명준;김용하;신중찬;황경민
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, we peformed optimal design of a composite skid landing gear, one of the solid spring shock absorbers, for light vertical takeoff and landing aircraft. Although a solid spring type has poor energy dissipation capability, it is commonly used for light aircraft where sink speeds are low and shock absorption is non-critical in terms of simplicity, low cost and weight reduction. In this paper, design parameters of solid spring such as sink speed, gear leg length, deflection and landing load factor were reviewed. In order to meet structural requirements such as deflection and strength, finally, we conducted optimal design of the composite skid landing gear for VTOL UAV using genetic algorithm and pattern search algorithm.

정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구 (A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press)

  • 김승수
    • Design & Manufacturing
    • /
    • 제10권3호
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석 (Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model)

  • 장문석;최영휴;김수태;최재일
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.