• Title/Summary/Keyword: Elastic Beam

Search Result 1,142, Processing Time 0.029 seconds

The Bending and Twisting Analysis of SMA/Composite Beams (SMA 선이 삽입된 복합재 보의 굽힘 및 비틀림 해석)

  • Park, Bum-Sik;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.151-154
    • /
    • 2001
  • Shape memory alloy (SMA) has demonstrated its potentials for various smart structure applications. SMA wires undergo a reversible phase transformation from martensite to austenite as temperature increases. This transformation leads to shape recovery and associated recovery strains. If SMA actuators are embedded off the neutral surface and are oriented in arbitrary angles with respect to a beam axis, then the beam bends and twists due to the coupling effects of recovery strains activated. In this study, the bending and twisting of a SMA/Composite beam were controlled by both electric resistive heating and passive elastic tailoring. 3-dimensional finite element formulations were derived and validated to analyze the responses of the SMA/Composite beam. Numerical results show that the shape of the SMA/Composite beam can be controlled by judicious choices of control temperatures, SMA angles, and elastic tailoring.

  • PDF

The Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.826-831
    • /
    • 2005
  • In this paper the effect of moving mass on dynamic behavior of cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The crack is assumed to be in the first mode of fracture. As the depth of the crack is increased, the tip displacement of the cantilever beam is increased. When the crack depth is constant the frequency of a cracked beam is proportional to the spring stiffness.

  • PDF

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations (탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향)

  • Ahn, Sung-Jin;Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

Analytic solution for the interaction between a viscoelastic Bernoulli-Navier beam and a winkler medium

  • Floris, Claudio;Lamacchia, Francesco Paolo
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.593-618
    • /
    • 2011
  • This paper deals with the problem of the determination of the response of a viscoelastic Bernoulli-Navier beam, which is resting on an elastic medium. Assuming uniaxial bending, the displacement of the beam axis is governed by an integro-differential equation. The compatibility of the displacements between the beam and the elastic medium is imposed through an integral equation. In general and in particular in the case of a Boussinesq medium, the solution has to be pursued numerically. On the contrary, in the case of a Winkler's medium the compatibility equation becomes a linear finite relationship, which allows finding an original analytical solution of the problem for both hereditary and aging behavior of the beam. Some numerical examples complete the paper, in which a comparison is made between the hereditary and the aging model for the creep of the beam.

A finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading

  • Vinyas, M.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.519-535
    • /
    • 2017
  • In this article, static analysis of a magneto-electro-elastic (MEE) beam subjected to various thermal loading and boundary conditions has been investigated. Influence of pyroeffects (pyroelectric and pyromagnetic) on the direct quantities (displacements and the potentials) of the MEE beam under different boundary conditions is studied. The finite element (FE) formulation of the MEE beam is developed using the total potential energy principle and the constitutive equations of the MEE material taking into account the coupling between elastic, electric, magnetic and thermal properties. Using the Maxwell electrostatic and electromagnetic relations, variation of stresses, displacements, electric and magnetic potentials along the length of the MEE beam are investigated. Effect of volume fractions, aspect ratio and boundary conditions on the direct quantities in thermal environment has been determined. The present investigation may be useful in design and analysis of magnetoelectroelastic smart structures and sensor applications.

Effective moment of inertia for rectangular elastoplastic beams

  • Faller, Ronald K.;Rosson, Barry T.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.95-110
    • /
    • 1999
  • An effective moment of inertia is developed for a rectangular, prismatic elastoplastic beam with elastic, linear-hardening material behavior. The particular solution for a beam with elastic, perfectly plastic material behavior is also presented with applications for beam bending in closed-form. Equations are presented for the direct application of the virtual work method for elastoplastic beams with concentrated and distributed loads. Comparisons are made between the virtual work method deflections and the deflections obtained by using an average effective moment of inertia over two lengths of the beam in the elastoplastic region.

Improved Numerical Method Evaluating Exact Static Element Stiffness Matrices of Beam on Elastic Foundations (탄성지반위의 보의 엄밀한 강성계산을 위한 개선된 해석방법)

  • Kim Nam-Il;Lee Jun-Seok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.589-596
    • /
    • 2006
  • An improved numerical method to obtain the exact element stiffness matrix is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric thin-walled beam-columns with two-types of elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column. This numerical technique is firstly accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Then exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions.

  • PDF

Vibration Analysis of Euler-Bernoulli Beam with Open Cracks on Elastic foundations Using Differential Transformation Method and Generalized Differential Quadrature Method (미분변환법과 일반화 미분구적법을 이용한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli 보의 진동 해석)

  • Hwang Ki-Sup;Yun Jong-Hak;Shin Young-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.279-286
    • /
    • 2006
  • The main purpose of this paper is to apply differential transformation method(DTM) and generalized differential quadrature method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results.

Vibration of Initially Stressed Beam with Discretely Spaced Multiple Elastic Supports

  • Park, Nam-Gyu;Lee, Seong-Ki;Kim, Hyeong-Koo;Park, Ki-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.733-741
    • /
    • 2004
  • Vibration behavior of an initially stressed beam on discretely spaced multiple elastic supports has been studied and a theoretical formulation of the system is derived using the variational principle. Unlike beams on an elastic foundation, discretely spaced supports can distort the beam mode shapes when the supports have rather large stiffness, i.e. usually expected beam modes cannot be obtained, but rather irregular mode shapes are observed. Conversely, irregular modes can be recovered by changing initial stress. Since support location is closely associated with the dynamic characteristics, this work also discusses eigenvalue sensitivity with respect to the support position and some numerical examples are investigated to illustrate the above findings.