• Title/Summary/Keyword: El Ni$\tilde{n}$o-Southern Oscillation(ENSO)

Search Result 31, Processing Time 0.029 seconds

Estimation of sea level variations of the Java Sea during the ENSO period using the HYCOM

  • Sofian, Ibnu;Kozai, K.;Ohsawa, T.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.744-747
    • /
    • 2006
  • The sea level of the Java Sea is reproduced using HYbrid Coordinate Ocean Model (HYCOM) setting up in the horizontal grid from $100^{\circ}E$ to $125^{\circ}E$ and from $10^{\circ}S$ to $8^{\circ}N$. The model is initialized by ocean temperature and salinity profiles from Levitus 1998 and forced by the atmospheric field derived from NCEP reanalysis. In this research HYCOM is applied to explain the El $Ni{\tilde{n}}o$ Southern Oscillation (ENSO) impacts on the sea level of the Java Sea. The monthly tide gauge sea level data are produced based on hourly sea level data from 1993 to 1997. Altimeter sea level data are based on weekly merged products between TOPEX/Poseidon and ERS absolute dynamic topography (ADT). The simulated sea level both HYCOM and ADT agree well with the tide gauge sea level. The sea level of the Java Sea is high during the La $Ni{\tilde{n}}a$ period and low during the El $Ni{\tilde{n}}o$ period.

  • PDF

Characteristics of Tropical Cyclones in 2010 (2010년 태풍 특징)

  • Lim, Myeong Soon;Moon, Il-Ju;Cha, Yu-Mi;Chang, Ki-Ho;Kang, Ki-Ryong;Byun, Kun Young;Shin, Do-Shick;Kim, Ji Young
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.283-301
    • /
    • 2014
  • In 2010, only 14 tropical cyclones (TCs) were generated over the western North Pacific (WNP), which was the smallest since 1951. This study summarizes characteristics of TCs generated in 2010 over the WNP and investigates the causes of the record-breaking TC genesis. A long-term variation of TC activity in the WNP and verification of official track forecast in 2010 are also examined. Monthly tropical sea surface temperature (SST) anomaly data reveal that El Ni$\tilde{n}$o/Southern Oscillation (ENSO) event in 2010 was shifted from El Ni$\tilde{n}$o to La Ni$\tilde{n}$a in June and the La Ni$\tilde{n}$a event was strong and continued to the end of the year. We found that these tropical environments leaded to unfavorable conditions for TC formation at main TC development area prior to May and at tropics east of $140^{\circ}E$ during summer mostly due to low SST, weak convection, and strong vertical wind shear in those areas. The similar ENSO event (in shifting time and La Ni$\tilde{n}$a intensity) also occurred in 1998, which was the second smallest TC genesis year (16 TCs) since 1951. The common point of the two years suggests that the ENSO episode shifting from El Ni$\tilde{n}$o to strong La Ni$\tilde{n}$a in summer leads to extremely low TC genesis during La Ni$\tilde{n}$a although more samples are needed for confidence. In 2010, three TCs, DIANMU (1004), KOMPASU (1007) and MALOU (1009), influenced the Korean Peninsula (KP) in spite of low total TC genesis. These TCs were all generated at high latitude above $20^{\circ}N$ and arrived over the KP in short time. Among them, KOMPASU (1007) brought the most serious damage to the KP due to strong wind. For 14 TCs in 2010, mean official track forecast error of the Korea Meteorological Administration (KMA) for 48 hours was 215 km, which was the highest among other foreign agencies although the errors are generally decreasing for last 10 years, suggesting that more efforts are needed to improve the forecast skill.

Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S. (ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로)

  • Hwang, Syewoon;Hernandez, Jose
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.143-154
    • /
    • 2012
  • As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.

Application of a Coupled Harmonic Oscillator Model to Solar Activity and El Niño Phenomena

  • Muraki, Yasushi
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Solar activity has an important impact not only on the intensity of cosmic rays but also on the environment of Earth. In the present paper, a coupled oscillator model is proposed to explain solar activity. This model can be used to naturally reduce the 89-year Gleissberg cycle. Furthermore, as an application of the coupled oscillator model, we herein attempt to apply the proposed model to El $Ni{\tilde{n}}o$-southern oscillation (ENSO). As a result, the 22-year oscillation of the Pacific Ocean is naturally explained. Finally, we search for a possible explanation for coupled oscillators in actual solar activity.

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Interdecadal Changes in the Boreal Summer Tropical-Extratropical Teleconnections Occurred Around Mid-to-late 1990s (1990년대 중·후반을 전후한 북반구 여름철 열대-중위도 원격상관의 장기 변화)

  • Lee, June-Yi
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.325-336
    • /
    • 2018
  • This study investigates robust features of interdecadal changes in the Northern hemisphere summer tropical-extratropical teleconnection occurred around the mid-to-late 1990s by analyzing four different reanalysis data for atmospheric circulation and temperature, two precipitation reconstructions, and two sea surface temperature (SST) data during the satellite observation era of 1980~2017. For the last 38 years, there has been a significant increasing trend in anticyclonic circulation at lower and upper troposphere and 2 m air temperature with wavenumber-5 Rossby wave structure in the Northern Hemisphere (NH) extratropics. The increase has been accompanied with the significant weakening and northward shift of jet stream over Eurasia and the North Pacific. It is further found that there has been a significant interdecadal shift occurred around the mid-to-late 1990s in the two distinct modes of tropical-extratropical teleconnection: Western Pacific-North America (WPNA) and circumglobal teleconnection (CGT) pattern. After mid-to-late 1990s, the WPNA has played more important role in modulating the extratropical atmospheric circulation and surface climate, which has been preferentially occurred during the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) decaying or transition summer such as 1998, 2010 and 2016. During these summers, severe heat waves were occurred over many parts of the NH extratropics due to the combined effect of the increasing trend in the barotropic anticyclonic circulation and the significant WPNA across the NH. Although weakened, the CGT also contributed to some of hot summers over many parts of the NH extratropics such as 1999, 2000, 2008, 2011, and 2012 when weak to moderate La $Ni{\tilde{n}}o$ was persisted.

Impacts of Albedo and Wind Stress Changes due to Phytoplankton on Ocean Temperature in a Coupled Global Ocean-biogeochemistry Model

  • Jung, Hyun-Chae;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.392-405
    • /
    • 2019
  • Biogeochemical processes play an important role in ocean environments and can affect the entire Earth's climate system. Using an ocean-biogeochemistry model (NEMO-TOPAZ), we investigated the effects of changes in albedo and wind stress caused by phytoplankton in the equatorial Pacific. The simulated ocean temperature showed a slight decrease when the solar reflectance of the regions where phytoplankton were present increased. Phytoplankton also decreased the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude by decreasing the influence of trade winds due to their biological enhancement of upper-ocean turbulent viscosity. Consequently, the cold sea surface temperature bias in the equatorial Pacific and overestimation of the ENSO amplitude were slightly reduced in our model simulations. Further sensitivity tests suggested the necessity of improving the phytoplankton-related equation and optimal coefficients. Our results highlight the effects of altered albedo and wind stress due to phytoplankton on the climate system.

Development and Evaluation of Statistical Prediction Model of Monthly-Mean Winter Surface Air Temperature in Korea (한반도 겨울철 기온의 월별 통계 예측 모형 구축 및 검증)

  • Han, Bo-Reum;Lim, Yuna;Kim, Hye-Jin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.153-162
    • /
    • 2018
  • The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering $El-Ni{\tilde{n}}o$ Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

Long-term Variations of Troposphere-Stratosphere Mean Meridional Circulation (대류권-성층권 평균자오면순환의 장기변동)

  • Seol, Dong-Il
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.415-422
    • /
    • 2001
  • Studies of atmospheric general circulation in the troposphere and stratosphere are very important to understand the influence of human activities on the global climate and its change. Recently, the existence of an annual cycle in the circulation has been reported by a number of studies. In this study, the residual mean meridional circulation is calculated by the TEM momentum and continuity equations for the period from December 1985 to November 1995 (10 years), and the long-term variations of the circulation and mass fluxes across the 100hPa surface are examined. The multiple regression statistical model is used to obtain quantitatively the long-term variations. This study is focused especially on mean meridional circulation in the troposphere and stratosphere associated with ENSO (El Ni${\tilde{n}}$o-Southern Oscillation) which is known as a cause of the unusual weather, global climate, and its change. The results show that the global scale troposphere-stratosphere mean meridional circulation is intensified during El Ni${\tilde{n}}$o event and QBO (quasi-biennal oscillation) easterly phase and weakened during La Ni${\tilde{n}}$o event and QBO westerly phase. The signal of Mount Pinatubo volcanic eruption in June 1991 is obtained. Due to the volcanic eruption the global scale troposphere-stratosphere mean meridional circulation is abruptly intensified.

  • PDF

MULTISPECTRAL REMOTE SENSING ALGORITHMS FOR PARTICULATE ORGANIC CARBON (POC) AND ITS TEMPORAL AND SPATIAL VARIATION

  • Son, Young-Baek;Wang, Meng-Hua;Gardner, Wilford D.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.450-453
    • /
    • 2006
  • Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study were used along with remotely sensed data obtained from NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal component analysis (PCA) methods. In Case I and II waters empirical maximized simple ratio (MSR) and model-based PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm for routine use. In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed inter-annual variation in three different locations and may be affected by El $Ni{\tilde{n}}o/Southern$ Oscillation (ENSO) events.

  • PDF