DOI QR코드

DOI QR Code

Impacts of Albedo and Wind Stress Changes due to Phytoplankton on Ocean Temperature in a Coupled Global Ocean-biogeochemistry Model

  • Jung, Hyun-Chae (Division of Science Education and Institute of Fusion Science, Chonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education and Institute of Fusion Science, Chonbuk National University)
  • Received : 2019.07.30
  • Accepted : 2019.08.23
  • Published : 2019.08.31

Abstract

Biogeochemical processes play an important role in ocean environments and can affect the entire Earth's climate system. Using an ocean-biogeochemistry model (NEMO-TOPAZ), we investigated the effects of changes in albedo and wind stress caused by phytoplankton in the equatorial Pacific. The simulated ocean temperature showed a slight decrease when the solar reflectance of the regions where phytoplankton were present increased. Phytoplankton also decreased the El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude by decreasing the influence of trade winds due to their biological enhancement of upper-ocean turbulent viscosity. Consequently, the cold sea surface temperature bias in the equatorial Pacific and overestimation of the ENSO amplitude were slightly reduced in our model simulations. Further sensitivity tests suggested the necessity of improving the phytoplankton-related equation and optimal coefficients. Our results highlight the effects of altered albedo and wind stress due to phytoplankton on the climate system.

Keywords

References

  1. ARCCSS, 2018, MOM5 input data, Australian Research Council's Centre of Excellence for Climate System Science. http://climate-cms.unsw.wikispaces.net/Data. Accessed 22 November 2018 (note: resource no longer exists online).
  2. Arrigo, K.R., Robinson, D.H., Worthen, D.L., Dunbar, R.B., DiTullio, G.R., VanWoert, M., and Lizotte, M.P., 1999, Phytoplankton community structure and the drawdown of nutrients and co2 in the Southern Ocean. Science, 283, 365-367. https://doi.org/10.1126/science.283.5400.365
  3. Burchard, H., Bolding, K., Kuhn, W., Meister, A., Neumann, T., and Umlauf, L., 2006, Description of a flexible and extendable physical-biogeochemical model system for the water column, Journal of Marine Systems, 61, 180-211, doi:10.1016/j.jmarsys.2005.04.011.
  4. Deacon, E.L., 1979, The role of coral mucus in reducing the wind drag over coral reefs, Boundary-Layer Meteorology, 17(4), 517-521, doi:10.1007/BF00118614.
  5. Dunne, J.P., John, J.G., Shevliakova, E., Stouffer, R.J., Krasting, J.P., Malyshev, S.L., Milly, P.C.D, Sentman, L.T., Adcroft, A.J., Cooke, W., Dunne, K.A., Griffies, S.M., Hallberg, R.W., Harrison, M.J., Levy, H., Wittenberg, A.T., Phillips, P.J., and Zadeh, N., 2012, GFDL's ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics, Journal of Climate, 26, 2247-2267, doi:10.1175/jcli-d-12-00150.1.
  6. Good, S.A., Martin, M.J., and Rayner, N.A., 2013, EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, Journal of Geophysical Research-Oceans, 118, 6704-6716, doi:10.1002/2013JC009067.
  7. Hense, I., Stemmler, I., and Sonntag, S., 2017, Ideas and perspectives: Climate-relevant marine biologically driven mechanisms in earth system models. Biogeosciences, 14, 403-413, doi:10.5194/bg-14-403-2017.
  8. Hutchinson, P.A., and Webster, I.T., 1994, On the distribution of bluegreen algae in lakes: Wind-tunnel tank experiments, Limnology and Oceanography, 39(2), 374-382. https://doi.org/10.4319/lo.1994.39.2.0374
  9. Jung, H.-C., 2019, Development and assessment of a coupled ocean-biogeochemistry model. Unpublished Ph.D. dissertation, Chonbuk National University, Jeonju, Korea, 164p.
  10. Kahru, M., Leppanen, J., and Rud, O., 1993, Cyanobacterial blooms cause heating of the sea surface, Marine Ecology Progress Series, 101, 1-7. https://doi.org/10.3354/meps101001
  11. Large, W.G. and Yeager, S.G., 2009, The global climatology of an interannually varying air-sea flux data set, Climate Dynamics, 33, 341-364, doi:10.1007/s00382-008-0441-3.
  12. LaRoche, J. and Breitbarth, E., 2005, Importance of the diazotrophs as a source of new nitrogen in the ocean. Journal of Sea Research, 53, 67-91, doi:10.1016/j.seares.2004.05.005.
  13. Lim, H.-G., Park, J.-Y., and Kug, J.-S., 2017, Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model, Climate Dynamics, doi:10.1007/s00382-017-4036-8.
  14. Park, H.-J., Moon, B.-K., Wie, J., Kim, K.-Y., Lee, J., Byun, Y.-H., 2017, Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific, Journal of Korean Earth Science Society, 38(7), 469-480, http://doi.org/10.5467/JKESS.2017.38.7.469.
  15. Park, J.-Y., Dunne, J.P., and Stock, C.A., 2018, Ocean chlorophyll as a precursor of ENSO: An Earth system modeling study, Geophysical Research Letters, 45, 1939-1947, doi:10.1002/2017GL076077.
  16. Park, J.-Y., Kug, J.-S., Bader, J., Rolph R., and Kwon M., 2015, Amplified Arctic warming by phytoplankton under greenhouse warming, Proceedings of the National Academy of Sciences of the United States of America, 112, 5921-5926, doi:10.1073/pnas.1416884112.
  17. Park, J.-Y., Kug, J.-S., Park, J.-S., Yeh, S.-W., and Jang, C.J., 2011, Variability of chlorophyll associated with ENSO and its possible biological feedback in the Equatorial Pacific, Journal of Geophysical Research, 116, C10001, https://doi:10.1029/2011JC007056.
  18. Park, J.-Y., Kug, J.-S., Seo, H., and Bader J., 2014, Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs, Climate Dynamics, 43, 1811-1827, https://doi:10.1007/s00382-013-2009-0.
  19. Park, J.-Y., Stock, C.A., Dunne, J.P., Yang, X.S., and Rosati, A., 2019, Seasonal to multiannual marine ecosystem prediction with a global earth system model. Science, 365, 284-288. https://doi.org/10.1126/science.aav6634
  20. Sathyendranath, S., Gouveia, A.D., Shetye, S.R., Ravindran, P., and Platt, T., 1991, Biological control of surface temperature in the Arabian Sea, Nature, 349(6304), 54-56, doi:10.1038/349054a0.
  21. Sonntag, S., 2013, Modeling biological-physical feedback mechanisms in marine system (Doctoral dissertation), University of Hamburg, Germany.
  22. Sonntag, S., and Hense, I., 2011, Phytoplankton behavior affects ocean mixed layer dynamics through biologicalphysical feedback mechanisms, Geophysical Research Letters, 38, L15610, doi:10.1029/2011GL048205.
  23. Stal, L.J., 2009, Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environmental Microbiology, 11, 1632-1645, doi:10.1111/j.1758-2229.2009.00016.x.