• Title/Summary/Keyword: Eigenvector methods

Search Result 62, Processing Time 0.024 seconds

Direction-of-Arrival Estimation : Signal Eigenvector Method(SEM) (도래각 추정 : 신호 고유벡터 알고리즘)

  • 김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2303-2312
    • /
    • 1994
  • A high resolution algorithm is presented for resolving multiple narrowband plane waves that are incident on an equispaced linear array. To overcome the deleterious effects due to coherent sources, a number of noise-eigenvector-based approaches have been proposed for narrowband signal processing. For differing reasons, each f these methods provide a less than satisfactory resolution of the coherency problem. The proposed algorithm makes use of fundamental property possessed by those eigenvectors of the spatial covariance matrix that are associated with eigenvalues that are larger than the sensor noise level. This property is then used to solve the incoherent and coherent sources incident on an equispaced linear array. Simulation results are shown to illustrate the high resolution performance achieved with this new approach relative to that obtained with MUSIC and spatial smoothed MUSIC.

  • PDF

Semantic Network Analysis about Comments on Internet Articles about Nurse Workplace Bullying (간호사 괴롭힘 관련 인터넷 포털 기사에 대한 댓글의 의미연결망 분석)

  • Kim, Chang Hee;Moon, Seong Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.25 no.3
    • /
    • pp.209-220
    • /
    • 2019
  • Purpose: A significant amount of public opinion about nurse bullying is expressed on the internet. The purpose of this study was to analyze the linkage structures among words extracted from comments on internet articles related to nurse workplace bullying using semantic network analysis. Methods: From February 2018 to April 2019, comments made on news articles posted to the Daum and Naver web portal containing keywords such as "nurse", "Taeum", and "bullying" were collected using a web crawler written in Python. A morphological analysis performed with Open Korean Text in KoNLPy generated 54 major nodes. The frequencies, eigenvector centralities, and betweenness centralities of the 54 nodes were calculated and semantic networks were visualized using the UCINET and NetDraw programs. Convergence of iterated correlations (CONCOR) analysis was performed to identify structural equivalence. Results: This paper presents results about March 2018 and January 2019 because these months had highest number of articles. Of the 54 major nodes, "nurse", "hospital", "patient", and "physician" were the most frequent and had the highest eigenvector and betweenness centralities. The CONCOR analysis identified work environment, nurse, gender, and military clusters. Conclusion: This study structurally explored public opinion about nurse bullying through semantic network analysis. It is suggested that various studies on nursing phenomena will be conducted using social network analysis.

A Study on the Dyadic Sorting method for the Regularization in DT-MRI (Dyadic Sorting 방법을 이용한 DT-MRI Regularization에 관한 연구)

  • Kim, Tae-Hwan;Woo, Jong-Hyung;Lee, Hoon;Kim, Dong-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.30-39
    • /
    • 2010
  • Since Diffusion tensor from Diffusion Tensor Magnetic Resonance Imaging(DT-MRI) is so sensitive to noise, the principle eigenvector(PEV) calculated from Diffusion tensor could be erroneous. Tractography obtained from PEV could be deviated from the real fiber tract. Therefore regularization process is needed to eliminate noise. In this paper, to reduce noise in DT-MRI measurements, the Dyadic Sorting(DS) method as regularization of the eigenvalue and the eigenvector is applied in the tractography. To resort the eigenvalues and the eignevectors, the DS method uses the intervoxel overlap function which can measure the overlap between eigenvalue-eigenvector pairs in the $3\times3$ pixel. In this paper, we applied the DS method to the three-dimensional volume. We discuss the error analysis and numerical study to the synthetic and the experimental data. As a result, we have shown that the DS method is more efficient than the median filtering methods as much as 79.97%~83.64%, 85.62%~87.76% in AAE, AFA respectively for the corticospinal tract of the experimental data.

Note on Estimating the Eigen System of Σ1-1Σ2

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.603-606
    • /
    • 2003
  • The maximum likelihood estimators of the eigenvalues and eigenvectors of $$\Sigma$$_1$^{-1}$$\Sigma$$_2$are shown to be the eigenvalues and eigenvectors of $S$_1$^{1}$S$_2$ under multivariate normality and are explicitly derived. The nature of the eigenvalues and eigenvectors of $$\Sigma$$_1$^{-1}$$\Sigma$$_2$ or their estimators will be uncovered.

A Note on Eigenstructure of a Spatial Design Matrix In R1

  • Kim Hyoung-Moon;Tarazaga Pablo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.653-657
    • /
    • 2005
  • Eigenstructure of a spatial design matrix of Matheron's variogram estimator in $R^1$ is derived. It is shown that the spatial design matrix in $R^1$ with n/2$\le$h < n has a nice spectral decomposition. The mean, variance, and covariance of this estimator are obtained using the eigenvalues of a spatial design matrix. We also found that the lower bound and the upper bound of the normalized Matheron's variogram estimator.

AN ASYNCHRONOUS PARALLEL SOLVER FOR SOME MATRIX PROBLEMS

  • Park, Pil-Seong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.1045-1058
    • /
    • 2000
  • In usual synchronous parallel computing, workload balance is a crucial factor to reduce idle times of some processors that have finished their jobs earlier than others. However, it is difficult to achieve on a heterogeneous workstation clusters where the available computing power of each processor is unpredictable. As a way to overcome such a problem, the idea of asynchronous methods has grown out and is being increasingly used and studied, but there is none for eigenvalue problems yet. In this paper, we suggest a new asynchronous method to solve some singular matrix problems, that can also be used for finding a certain eigenvector of some matrices.

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

A Study for Obtaining Weights in Pairwise Comparison Matrix in AHP

  • Jeong, Hyeong-Chul;Lee, Jong-Chan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.531-541
    • /
    • 2012
  • In this study, we consider various methods to estimate the weights of a pairwise comparison matrix in the Analytic Hierarchy Process widely applied in various decision-making fields. This paper uses a data dependent simulation to evaluate the statistical accuracy, minimum violation and minimum norm of the obtaining weight methods from a reciprocal symmetric matrix. No method dominates others in all criteria. Least squares methods perform best in point of mean squared errors; however, the eigenvectors method has an advantage in the minimum norm.

Parametric Approaches for Eigenstructure Assignment in High-order Linear Systems

  • Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.419-429
    • /
    • 2005
  • This paper considers eigenstructure assignment in high-order linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called high-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically very simple and reliable; the second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

A Study on the Tensor-Valued Median Filter Using the Modified Gradient Descent Method in DT-MRI (확산텐서자기공명영상에서 수정된 기울기강하법을 이용한 텐서 중간값 필터에 관한 연구)

  • Kim, Sung-Hee;Kwon, Ki-Woon;Park, In-Sung;Han, Bong-Soo;Kim, Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.817-824
    • /
    • 2007
  • Tractography using Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is a method to determine the architecture of axonal fibers in the central nervous system by computing the direction of the principal eigenvector in the white matter of the brain. However, the fiber tracking methods suffer from the noise included in the diffusion tensor images that affects the determination of the principal eigenvector. As the fiber tracking progresses, the accumulated error creates a large deviation between the calculated fiber and the real fiber. This problem of the DT-MRI tractography is known mathematically as the ill-posed problem which means that tractography is very sensitive to perturbations by noise. To reduce the noise in DT-MRI measurements, a tensor-valued median filter which is reported to be denoising and structure-preserving in fiber tracking, is applied in the tractography. In this paper, we proposed the modified gradient descent method which converges fast and accurately to the optimal tensor-valued median filter by changing the step size. In addition, the performance of the modified gradient descent method is compared with others. We used the synthetic image which consists of 45 degree principal eigenvectors and the corticospinal tract. For the synthetic image, the proposed method achieved 4.66%, 16.66% and 15.08% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively. For the corticospinal tract, at iteration number ten the proposed method achieved 3.78%, 25.71 % and 11.54% less error than the conventional gradient descent method for error measures AE, AAE, AFA respectively.