• Title/Summary/Keyword: Eigenvalue-Eigenvector Analysis

Search Result 67, Processing Time 0.023 seconds

Document Thematic words Extraction using Principal Component Analysis (주성분 분석을 이용한 문서 주제어 추출)

  • Lee, Chang-Beom;Kim, Min-Soo;Lee, Ki-Ho;Lee, Guee-Sang;Park, Hyuk-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.10
    • /
    • pp.747-754
    • /
    • 2002
  • In this paper, We propose a document thematic words extraction by using principal component analysis(PCA) which is one of the multivariate statistical methods. The proposed PCA model understands the flow of words in the document by using an eigenvalue and an eigenvector, and extracts thematic words. The proposed model is estimated by applying to document summarization. Experimental results using newspaper articles show that the proposed model is superior to the model using either word frequency or information retrieval thesaurus. We expect that the Proposed model can be applied to information retrieval , information extraction and document summarization.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.

Real-Time Face Recognition System using PDA (PDA를 이용한 실시간 얼굴인식 시스템 구현)

  • Kwon Man-Jun;Yang Dong-Hwa;Go Hyoun-Joo;Kim Jin-Whan;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.649-654
    • /
    • 2005
  • In this paper, we describe an implementation of real-time face recognition system under ubiquitous computing environments. First, face image is captured by PDA with CMOS camera and then this image with user n and name is transmitted via WLAN(Wireless LAN) to the server and finally PDA receives verification result from the server The proposed system consists of server and client parts. Server uses PCA and LDA algorithm which calculates eigenvector and eigenvalue matrices using the face images from the PDA at enrollment process. And then, it sends recognition result using Euclidean distance at verification process. Here, captured image is first compressed by the wave- let transform and sent as JPG format for real-time processing. Implemented system makes an improvement of the speed and performance by comparing Euclidean distance with previously calculated eigenvector and eignevalue matrices in the learning process.

A Study on Performance Improvement of Adaptive SLC System Using Eigenanalysis Method and Comparing with RLS Method (Eigenanalysis 방식의 적응 SLC(sidelobe canceller) 시스템의 적용에 따른 성능향상 및 RLS 방식과외 비교에 관한 연구)

  • Jung, Sin-Chul;Kim, Se-Yon;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.111-122
    • /
    • 2001
  • In this paper, we study the performance of eigencanceller which use a eigenvector and eigenvalue in order to update a weighter vector. Eigencanceller can suppress directional interferences and noise effectively while maintaining specified beam pattern constraints. The constraints and optimal weight vector of eigencanceller vary by using interference and noise or desired signal, interference signal and noise as array input signal. From the analysis results in the steady state, We show that weight vectors in each case are simplified the form of projection equation that belongs to desired subspace orthogonal to interference subspace and eigencanceller has the better performance than RLS method through mathematical analysis and simulation.

  • PDF

Operational modal analysis of reinforced concrete bridges using autoregressive model

  • Park, Kyeongtaek;Kim, Sehwan;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1017-1030
    • /
    • 2016
  • This study focuses on the system identification of reinforced concrete bridges using vector autoregressive model (VAR). First, the time series output response from a bridge establishes the autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. Burg's algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the forward and the backward errors. The computed ARCs are assembled in the state system matrix and the eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address problems related to damage detection. Operational modal analysis using ARMERA is applied to three experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage locations and extension. The neural network uses a specific number of ARCs as input and multiple submatrix scaling factors of the structural stiffness matrix as output to represent the damage.

Simplified Finite Element Model Building of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft (항공기 구조 동특성 해석을 위한 외부 장착 포드의 단순화 유한요소 모델 구축)

  • Lee, Jong-Hak;Ryu, Gu-Hyun;Yang, Sung-Chul;Kim, Ji-Eok;Jung, Dae-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.495-501
    • /
    • 2012
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FE model building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FE model reflecting the results of the modal testing of a pod is built through the optimization and will be applied to the structural dynamic model of an aircraft which is used to verified the stability of vibration and flutter of an aircraft.

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

Feedback control design for intelligent structures with closely-spaced eigenvalues

  • Cao, Zongjie;Lei, Zhongxiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.903-918
    • /
    • 2014
  • Large space structures may have resonant low eigenvalues and often these appear with closely-spaced natural frequencies. Owing to the coupling among modes with closely-spaced natural frequencies, each eigenvector corresponding to closely-spaced eigenvalues is ill-conditioned that may cause structural instability. The subspace to an invariant subspace corresponding to closely-spaced eigenvalues is well-conditioned, so a method is presented to design the feedback control law of intelligent structures with closely-spaced eigenvalues in this paper. The main steps are as follows: firstly, the system with closely-spaced eigenvalues is transformed into that with repeated eigenvalues by the spectral decomposition method; secondly, the computation for the linear combination of eigenvectors corresponding to repeated eigenvalues is obtained; thirdly, the feedback control law is designed on the basis of the system with repeated eigenvalues; fourthly, the system with closely-spaced eigenvalues is regarded as perturbed system on the basis of the system with repeated eigenvalues; finally, the feedback control law is applied to the original system, the first order perturbations of eigenvalues are discussed when the parameter modifications of the system are introduced. Numerical examples are given to demonstrate the application of the present method.

A Study on Selecting Principle Component Variables Using Adaptive Correlation (적응적 상관도를 이용한 주성분 변수 선정에 관한 연구)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.

On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction (비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.361-368
    • /
    • 2004
  • The purpose of this study is to propose a new on-line nonlinear PCA(OL-NPCA) method for a nonlinear feature extraction from the incremental data. Kernel PCA(KPCA) is widely used for nonlinear feature extraction, however, it has been pointed out that KPCA has the following problems. First, applying KPCA to N patterns requires storing and finding the eigenvectors of a N${\times}$N kernel matrix, which is infeasible for a large number of data N. Second problem is that in order to update the eigenvectors with an another data, the whole eigenspace should be recomputed. OL-NPCA overcomes these problems by incremental eigenspace update method with a feature mapping function. According to the experimental results, which comes from applying OL-NPCA to a toy and a large data problem, OL-NPCA shows following advantages. First, OL-NPCA is more efficient in memory requirement than KPCA. Second advantage is that OL-NPCA is comparable in performance to KPCA. Furthermore, performance of OL-NPCA can be easily improved by re-learning the data.