• Title/Summary/Keyword: Eigenfunction expansion

Search Result 114, Processing Time 0.026 seconds

Evaluation of T-stress for cracks in elastic sheets

  • Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.335-346
    • /
    • 2005
  • The T-stress of cracks in elastic sheets is solved by using the fractal finite element method (FFEM). The FFEM, which had been developed to determine the stress intensity factors of cracks, is re-applied to evaluate the T-stress which is one of the important fracture parameters. The FFEM combines an exterior finite element model with a localized inner model near the crack tip. The mesh geometry of the latter is self-similar in radial layers around the tip. The higher order Williams series is used to condense the large numbers of nodal displacements at the inner model near the crack tip to a small set of unknown coefficients. Numerical examples revealed that the present approach is simple and accurate for calculating the T-stresses and the stress intensity factors. Some errors of the T-stress solutions shown in the previous literature are identified and the new solutions for the T-stress calculations are presented.

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF

STUDY ON TWO-DIMENSIONAL LAMINAR FLOW PAST A VERTICAL PLATE IN A MICROCHANNEL (마이크로채널 내의 수직 평판을 지나는 2차원 층류유동장에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.233-238
    • /
    • 2010
  • A two-dimensional laminar flow past a vertical plate in a microchannel is investigated. At far upstream and downstream from the plate in the microchannel, the plane Poiseuille flow exists. The Stokes flow for this microchannel is investigated analytically and then the laminar flow by numerical method. For the Stokes flow analysis, the method of eigenfunction expansion is used. From the results, the streamline pattern and the pressure distribution are plotted, and the additional pressure drop induced by the plate and the force exerted on the plate are calculated as functions of the length of the plate. For the laminar flow, finite difference method (FDM) is used to obtain the vorticity and the stream function. When the Reynolds number exceeds a critical value, a pair of viscous eddies appears behind the plate.

  • PDF

A Study on Energy Release Rate for Interface Cracks in Anisotropic Dissimilar Materials (이방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • Kim, Jin-Gwang;Jo, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1835-1843
    • /
    • 2001
  • The energy release rate for an interface crack in anisotropic dissimilar materials was obtained by the eigenfunction expansion method and also was analyzed numerically by the reciprocal work contour integral method. It was shown that the results for orthotropic dissimilar materials are consistent with the other worker's results.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지해방률에 대한 연구)

  • 이원욱;김진광;조상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.752-754
    • /
    • 1997
  • The stress intensity factor for an interface crack in dissimilar materials has been obtained by many researchers. But research of the energy release rate for an interface crack in pseudo-isotropic dissimilar materials is insufficient yet. In this paper, the energy release rate for cracks in pseudo-isotropic dissimilar materials was obtained using eigenfunction expansion method and also analyzed numerically using the reciprocal work contour integral method. The results were verified by comparing with other worker's results.

  • PDF

Two-dimensional Elastic Analysis of Doubly Periodic Circular Holes in Infinite Plane

  • Lee, Kang-Yong;Chen, Yi-Zhou
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.655-665
    • /
    • 2002
  • Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is given in this paper. Two cases of loading, remote tension and remote shear, are considered. A rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be reduced to a complex mixed one. It is found that the eigenfunction expansion variational method is efficient to solve the problem. Based on the deformation response under certain loading, the notched medium could be modeled by an orthotropic medium without holes. Elastic properties for the equivalent orthotropic medium are investigated, and the stress concentration along the hole contour is studied. Finally, numerical examples and results are given.

The Calculation of Reflection Coefficients of Water Waves over Various Shear Currents with a Uniform Depth Topography (다양한 외부흐름에 대한 평탄한 지형을 통과하는 파랑의 반사율 산정)

  • Lee, Jun-Whan;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • The reflection coefficients of monochromatic water waves over various shear currents flowing on a constant topography are estimated analytically in this study. The region of varying shear currents is represented by a finite number of tiny steps with a uniform depth topography. The proper numbers of steps and evanescent modes needed for the analysis are proposed by a series of convergence tests. The characteristics of reflection coefficients for various shear currents conditions are also examined.

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

Characterizations of Spherical Luneburg Lens Antennas with Air-gaps and Dielectric Losses

  • Kim, Kang-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In this paper, spherical Luneburg lens antennas have been systematically analyzed using the Eigenfunction Expansion Method (EEM), The developed technique has capability of performing a complete 3-D analysis to characterize the multi-layered dielectric spherical lens with arbitrary permittivity and permeability. This paper describes the analysis technique, and presents the results of the parametric study of Luneburg lens antennas by varying design parameters suoh as the diameter of the lens antenna (up to 80 wavelength), number of spherical shells (up to 30 shells), air-gaps between spherical shells, and dielectric loss of the material. Many representative engineering design curves including the far-field patterns, wide-angle sidelobe characterizations, antenna efficiency have been presented.

  • PDF

Wave Reflection and Transmission Coefficients of Rubble Mound Breakwaters under Oblique Incident Waves (경사입사파랑중의 사석방파제에 의한 반사율과 투과율에 관한 연구)

  • 배기성;김도삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • By applying the Boundary Integral Equation Method (BIEM) to obliquely incident for Rubble Mound Breakwater (RMB), wave reflection and transmission the coefficients are studied numerically. The validity of and the present BIEM is confirmed by comparing it with 1)numerical results of the eigenfunction expansion method of Dalrymple et al.(1991), and 2)numerical results of the BIEM of Kojima et al.(1988). Therefore, the characteristics of RMB for obliquely incident waves are investigated according to the variations of the wave period, equivalent linear nondimensional friction coefficient and direction of incident waves. It is revealed that the wave transformations of obliquely incident waves are different from those of normally incident waves.

  • PDF