• 제목/요약/키워드: Efflux system

검색결과 72건 처리시간 0.04초

Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates

  • Kim, Soo-Young;Lee, Si-Kyung;Park, Myeong-Soo;Na, Hun-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1605-1612
    • /
    • 2016
  • Quinolone-resistant Salmonella strains were isolated from patient samples, and several quinolone-sensitive strains were used to analyze mutations in the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE and to screen for plasmid-mediated quinolone resistance. Among the 21 strains that showed resistance to nalidixic acid and ciprofloxacin (MIC 0.125-2.0 μg/ml), 17 strains had a mutation in QRDR codon 87 of gyrA, and 3 strains had a single mutation (Ser83 → Phe). Another cause of resistance, efflux pump regulation, was studied by examining the expression of acrB, ramA, marA, and soxS. Five strains, including Sal-KH1 and Sal-KH2, showed no increase in relative expression in an analysis using the qRT-PCR method (p < 0.05). In order to determine the genes involved in the resistance, the Sal-9 isolate that showed decreased susceptibility and did not contain a mutation in the gyrA QRDR was used to make the STM (MIC 8 μg/ml) and STH (MIC 16 μg/ml) ciprofloxacin-resistant mutants. The gyrA QRDR Asp87 → Gly mutation was identified in both the STM and STH mutants by mutation analysis. qRT-PCR analysis of the efflux transporter acrB of the AcrAB-TolC efflux system showed increased expression levels in both the STM (1.79-fold) and STH (2.0-fold) mutants. In addition, the expression of the transcriptional regulator marA was increased in both the STM (6.35-fold) and STH (21.73-fold) mutants. Moreover, the expression of soxS was increased in the STM (3.41-fold) and STH (10.05-fold) mutants (p < 0.05). Therefore, these results indicate that AcrAB-TolC efflux pump activity and the target site mutation in gyrA are involved in quinolone resistance.

Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa

  • Kim, Suhyeon;Kim, Songhee H.;Ahn, Jinsook;Jo, Inseong;Lee, Zee-Won;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.850-857
    • /
    • 2019
  • The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa, has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF-oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.

Regulation of Magnesium Release by cAMP during Chemical Hypoxia in the Rat Heart and Isolated Ventricular Myocytes

  • Kim, Jin-Shang;Scarpa, Antonio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.59-68
    • /
    • 1999
  • Chemically induced hypoxia has been shown to induce a depletion of ATP. Since intracellular free $Mg^{2+}\;([Mg^{2+}]_i)$ appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion following hormonal stimulation. To determine the relation between $Mg^{2+}$ efflux and cellular energy state in a hypoxic rat heart and isolated myocytes, $[Mg^{2+}]_i,$ ATP and $Mg^{2+}$ content were measured by using mag-fura-2, luciferin-luciferase and atomic absorbance spectrophotometry. $Mg^{2+}$ effluxes were stimulated by norepinephrine (NE) or cAMP analogues, respectively. $Mg^{2+}$ effluxes induced by NE or cAMP were more stimulated in the presence of metabolic inhibitors (MI). Chemical hypoxia with NaCN (2 mM) caused a rapid decrease of cellular ATP within 1 min. Measurement of $[Mg^{2+}]_i$ confirmed that ATP depletion was accompanied by an increase in $[Mg^{2+}]_i.$ No change in $Mg^{2+}$ efflux was observed when cells were incubated with MI. In the presence of MI, the cAMP-induced $Mg^{2+}$ effluxes were inhibited by quinidine, imipramine, and removal of extracellular $Na^+.$ In addition, after several min of perfusion with $Na^+-free$ buffer, a large increase in $Mg^{2+}$ efflux occurred when $Na^+-free$ buffer was switched to 120 mM $Na^+$ containing buffer. A similar $Mg^{2+}$ efflux was observed in myocytes. These effluxes were inhibited by quinidine and imipramine. These results indicate that the activation of $Mg^{2+}$ effluxes by hormonal stimulation is directly dependent on intracellular $Mg^{2+}$ contents and that these $Mg^{2+}$ effluxes appear to occur through the $Na^+-dependent\;Na^+/Mg^{2+}$ exchange system during chemical hypoxia.

  • PDF

Effect of onion and beet on plasma and liver lipids, platelet aggregation, and erythrocyte Na efflux in simvastatin treated hypercholesterolmic rats

  • Kim, Jung-Lye;Chae, In-Sook;Kang, Young-Hee;Kang, Jung-Sook
    • Nutrition Research and Practice
    • /
    • 제2권4호
    • /
    • pp.211-217
    • /
    • 2008
  • This study was purposed to investigate the effect of onion or beet on plasma and liver lipids, erythrocyte Na efflux channels and platelet aggregation in simvastatin (SIM) treated hypercholesterolemic rats. Forty Sprague Dawley rats were divided into four groups and fed 0.5% cholesterol based diets containing 2 mg/kg BW simvastatin or simvastatin with 5% onion or beet powder. Plasma total cholesterol was significantly increased in SIM group compared with the control (p<0.01), and the elevated plasma total cholesterol of SIM group was significantly decreased in SIM-onion and SIM-beet groups (p<0.05). HDL-cholesterol in SIM-beet group was significantly increased compared with other groups (p<0.05). Platelet aggregation in both the maximum and initial slope was significantly decreased in SIM group compared with SIM-onion group (p<0.05). Na-K ATPase was significantly decreased in SIM group compared with the control, SIM-onion and SIM-beet groups (p<0.05). Na passive leak was significantly increased in all groups treated with SIM compared with the control (p<0.05). The total Na efflux was decreased in SIM group and increased in SIM-onion group and the difference between these two groups was significant (p<0.05). There was no difference in intracellular Na among groups. In present study, simvastatin, a HMG CoA reductase inhibitor at dose of 2mg/kg BW/day rather increased plasma total cholesterol in rats, inferring that the action mechanism of simvastatin on cholesterol metabolism differ between rat and human. Onion and beet play favorable roles in cardiovascular system by restoring the reduced Na efflux through Na-K ATPase and Na-K cotransport in SIM treated rats.

유출입의 원리에 의한 물질대사와 광합성능에 관한 동력학적 연구 (The Sigmoid Kinetics of Mass-action and Photosynthesis based on Influx and Efflux in a Plant Bio-system)

  • 장남기
    • The Korean Journal of Ecology
    • /
    • 제1권1호
    • /
    • pp.3-10
    • /
    • 1977
  • The sigmoiod kinetics of mass-action in a biosystem have been studied by theoretical bases on the carrier hypothesis of influx and efflux of substrates. The sigmoid kinetic equations of assimilation and dissimilation rates indicate that each trophicfactor and each bio-factor behave according to the sigmoid kinetic equation and the bell shape case, and all of them are multiplicative. The general sigmoid kinetics of mass-action is given by the equation (30) which is determined by the total of the equation (28) of the assimilation rate and the equation (29) of the dissimilation rate. The sigmoid kinetic model of photosynthesis has been derived from the general equation of the sigmoid kinetics of mass-action.

  • PDF

Norfloxacin Resistance Mechanism of E. coli 11 and E. coli 101-Clinical Isolates of Escherichia coli in Korea

  • Kim, Kyung-Soon;Lee, Soon-Deuk;Lee, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • 제19권5호
    • /
    • pp.353-358
    • /
    • 1996
  • E. coli 11 and E. coli 101, clinical isolates of Escherichia coli were resistant to various quinolones, especially MICs to norfloxacin of both strains were higher than 100 mg/ml. In the presence of carbonyl cyanide m-chlorophenylhydrazone, a proton gradient uncoupler, norfloxacin uptake in both strains was increased, suggesting that an efflux system play an important role in the norfloxacin resistance. Outer membrane proteins of the susceptible and resistant strains which could affect the route of norfloxacin entry into cells were different. When quinolone resistance determining region(QRDR) of gyrA was amplified using PCR and cut with Hinf I, QRDR in the susceptible strain yielded two fragments while QRDRs in E. coli 11 and E. coli 101 yielded only one uncut fragment. When DNA sequence of QRDR was analyzed, there were two mutations as Ser-83 and Asp-87 in both resistant strains. these residues were changed to Leu-83 and Asn-87, respectively. These results showed that the norfloxacin resistance of E. coli 11 and E. coli 101 was resulted from multiple changes-an altered DNA gyrase A subunit, a change in route of drug entry, and reduction in quinolone concentration inside cells due to an efflux system.

  • PDF

Plasmid-Mediated Arsenical and Antimonial Resistance Determinants (ars) of Pseudomonas sp. KM20

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2002
  • Bacteria have evolved various types of resistance mechanism to toxic heavy metals, such as arsenic and antimony. An arsenical and antimonial resistant bacterium was isolated from a shallow creek draining a coal-mining area near Taebaek City, in Kangwon-Do, Korea. The isolated bacterium was identified and named as Pseudomonas sp. KM20 after biochemical and physiological studies were conducted. A plasmid was identified and its function was studied. Original cells harboring the plasmid were able to grow in the presence of 15 mM sodium arsenite, while the plasmid-cured (plasmidless) strain was sensitive to as little as 0.5 mM sodium arsenate. These results indicated that the plasmid of Pseudomonas sp. KM20 does indeed encode the arsenic resistance determinant. In growth experiments, prior exposure to 0.1 mM arsenate allowed immediate growth when they were challenged with 5 mM arsenate, 5 mM arsenite, or 0.1 mM antimonite. These results suggested that the arsenate, arsenite, and antimonite resistance determinants of Pseudomonas sp. KM20 plasmid were indeed inducible. When induced, plasmid-bearing resistance cells showed a decreased accumulation $of\;73^As$ and showed an enhanced efflux $of\;^73As$. These results suggested that plasmid encoded a transport system that extruded the toxic metalloids, resulting in the lowering of the intracellular concentration of toxic oxyanion. In a Southern blot study, hybridization with an E. coli R773 arsA-specific probe strongly suggested the absence of an arsA cistron in the plasmid-associated arsenical and antimonial resistance determinant of Pseudomonas sp. KM20.

The Inhibitory Effect of Rivastigmine and Galantamine on Choline Transport in Brain Capillary Endothelial Cells

  • Lee, Na-Young;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.65-70
    • /
    • 2010
  • The blood-brain barrier (BBB) transport of acetylcholinesterase (AChE) inhibitors, donepezil and tacrine suggested to be mediated by choline transport system in our previous study. Therefore, in the present study, we investigated the interaction of other AChE inhibitors, rivastigmine and galantamine with choline transporter at the BBB. The effects of rivastigmine and galantamine on the transport of choline by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells) were characterized by cellular uptake study using radiolabeled choline. The uptake of [$^3H$]choline was inhibited by rivastigmine and galantamine, with $IC_{50}$ values (i.e. concentration necessary for 50% inhibition) for 1.13 and 1.15 mM, respectively. Rivastigmine inhibited the uptake of [$^3H$]choline competitively with $K_i$ of 1.01 mM, but galantamine inhibited noncompetitively. In addition, the efflux of [$^3H$]choline was significantly inhibited by rivastigmine and galantamine. Our results indicated that the BBB choline transporter may be involved in a part of the influx and efflux transport of rivastigmine across the BBB. These findings should be therapeutically relevant to the treatment of Alzheimer's disease (AD) with AChE inhibitors, and, more generally, to the BBB transport of CNS-acting cationic drugs via choline transporter.

배추과 식물현탁배양 세포내에서 산성 아미노산의 능동수송 (Active Transport of Acidic Amino Acids in Suspension Cultured Brassica sp. Cells)

  • 조봉희
    • 식물조직배양학회지
    • /
    • 제22권3호
    • /
    • pp.137-142
    • /
    • 1995
  • 생리적인 pH에서 음전하를 띄우고 있는 산성 아미노산인 aspartate와 glutamate는 다른 중성 아미노산과 경쟁방해 실험을 행한 연구결과에 의하면 이들도 중성 아미노산이 갖는 능동운반계와 동일한 운반자를 소유한다. 중성 아미노산을 아미노산 한 분자 당 한개의 수소이온과 동반수송되고 전하에 보상을 위해서 한 분자 당 한개의 칼륨 이온을 배출한다. 그러나 산성 아미노산은 한 분자 당 2개의 수소이온과 동반수송되고, 한 분자 당 칼륨 한 분자를 배출한다. 중성 아미노산과 같은 운반계를 소유하고, 2개의 수소이온과 동반수송되는 능동운반계는 본 실험에서 처음으로 보고된다. 이 결과로부터 두개의 동반수송된 수소이온 중 한 개는 산성 아미노산에 있는 pK$_3$카르복실기를 먼저 중화시킨 후에 중성화된 형태로 수소이온 한 분자와 동반수송된다고 사료된다. 그러므로 유채는 20개의 아미노산에 대해서 다만 2개의 운반계, 즉 일반- 과 알카리성 아미노산 운반계를 가진 것으로 확인되었다. 다른 식물에서 이미 보고된 결과들을 참고하여 아미노산 운반계의 진화적인 의미를 고찰하였다.

  • PDF