References
- Allen, D. D., Lockman, P. R., Roder, K. E., Dwoskin, L. P. and Crooks, P. A. (2003). Active transport of high-affinity choline and nicotine analogs into the central nervous system by the blood-brain barrier choline transporter. J. Pharmacol. Exp. Ther. 304, 1268-1274. https://doi.org/10.1124/jpet.102.045856
- Allen, D. D. and Smith, Q. R. (2001). Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem. 76, 1032-1041. https://doi.org/10.1046/j.1471-4159.2001.00093.x
- Cohen, B. M., Renshaw, P. F., Stoll, A. L., Wurtman, R. J., Yurgelun-Todd, D. and Babb, S. M. (1995). Decreased brain choline uptake in older adults: an in vivo proton magnetic resonance spectroscopy study. J. Am. Med. Assoc. 274, 902-907. https://doi.org/10.1001/jama.274.11.902
- Cornford, E. M., Braun, L. D. and Oldendorf, W. H. (1978). Carrier mediated blood-brain barrier transport of choline and certain analogs. J. Neurochem. 30, 299-308. https://doi.org/10.1111/j.1471-4159.1978.tb06530.x
- Hosoya, K. I., Ohtsuki, S. and Terasaki, T. (2002). Recent advances in the brain-to-blood efflux transport across the blood-brain barrier. Int. J. Pharm. 248, 15-29. https://doi.org/10.1016/S0378-5173(02)00457-X
- Hosoya, K. I., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M. and Terasaki, T. (2000). mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines, a new in vitro BBB model for drug targeting. J. Drug Target. 8, 357-370. https://doi.org/10.3109/10611860008997912
- Jann, M. W., Shirley, K. L. and Small, G. W. (2002). Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 41, 719-739. https://doi.org/10.2165/00003088-200241100-00003
- Kang, Y. S., Terasaki, T., Ohnishi, T. and Tsuji, A. (1990). In vivo and in vitro evidence for a common carrier mediated transport of choline and basic drugs through the blood-brain barrier. J. Pharmacobiodyn. 13, 353-360. https://doi.org/10.1248/bpb1978.13.353
- Kang, Y. S., Lee, K. E., Lee, N. Y. and Terasaki, T. (2005). Donepezil, tacrine and alpha-phenyl-n-tert-butyl nitrone (PBN) inhibit choline transport by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB). Arch. Pharm. Res. 28, 443-450. https://doi.org/10.1007/BF02977674
- Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K. and Terasaki, T. (2002). Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J. Neurochem. 83, 1188-1195. https://doi.org/10.1046/j.1471-4159.2002.01223.x
- Kim, M. H., Maeng, H. J., Yu, K. H., Lee, K. R., Tsuruo, T., Kim, D. D., Shim, C. K. and Chung, S. J. (2009). Evidence of carrier-mediated transport in the penetration of donepezil into the rat brain. J. Pharm. Sci. 99, 1548-1566.
- Lee, N. Y. and Kang, Y. S. (2006). In vivo brain-to-blood efflux transport of choline at the blood-brain barrier. J. Appl. Pharmacol. 14, 45-49.
- Lee, N. Y. and Kang, Y. S. (2008). The efflux transport of choline through blood-brain barrier is inhibited by Alzheimer's disease therapeutics. Biomol. & Ther. 16, 179-183. https://doi.org/10.4062/biomolther.2008.16.3.179
- Matsui, K., Mishima, M., Nagai, Y., Yuzuriha, T. and Yoshimura, T. (1999). Absorption, Distribution, Metabolism, and Excretion of Donepezil (Aricept) after a Single Oral Administration to Rat. Drug Metab. Dispos. 27, 1406-1414.
- McNally, W. P., Pool, W. F., Sinz, M. W., Dehart, P., Ortwine, D. F., Huang, C. C., Chang, T. and Woolf, T. F. (1996). Distribution of tacrine and metabolites in rat brain and plasma after single- and multiple-dose regimens; Evidence for accumulation of tacrine in brain tissue. Drug Metab. Dispos. 24, 628-633.
- Metting, T. L., Burgio, D. E., Terry, A. V., Beach, J. W., Mccurdy, C. R. and Allen, D. D. (1998). Inhibition of brain choline uptake by isoarecolone and lobeline derivatives: implications for potential vector-mediated brain drug delivery. Neurosci. Let. 258, 25-28. https://doi.org/10.1016/S0304-3940(98)00871-4
- Murakami, H., Takanaga, H., Matsuo, H., Ohtani, H. and Sawada, Y. (2000). Comparison of blood-brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. Heart Circ. Physiol. 279, H1022-1028. https://doi.org/10.1152/ajpheart.2000.279.3.H1022
- Ohtsuki, S. and Terasaki T. (2007). Contribution of carriermediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24, 1745-1758. https://doi.org/10.1007/s11095-007-9374-5
- Pardridge, W. M. (1988). Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28, 25-39. https://doi.org/10.1146/annurev.pa.28.040188.000325
- Polinsky, R. J. (1998). Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin. Ther. 20, 634-647. https://doi.org/10.1016/S0149-2918(98)80127-6
- Sawada, N., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T. and Sawada, Y. (1999). Choline uptake by mouse brain capillary endothelial cells in culture. J. Pharm. Pharmacol. 51, 847-852. https://doi.org/10.1211/0022357991773050
- Sung, J. H., Yu, K. H., Park, J. S., Tsuruo, T., Kim, D. D., Shim, C. K., Chung, S. J. (2005). Saturable distribution of tacrine into the striatal extracellular fluid of the rat: evidence of involvement of multiple organic cation transporters in the transport. Drug. Metab. Dispos. 33, 440-448. https://doi.org/10.1124/dmd.104.002220
- Takanaga, H., Tokuda, N., Ohtsuki, S., Hosoya, K. and Terasaki, T. (2002). ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-toblood efflux transport for L-proline. Mol. Pharmacol. 61, 1289-1296. https://doi.org/10.1124/mol.61.6.1289
- Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E. and Hosoya, K. (2003). New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov. Today. 8, 944-954. https://doi.org/10.1016/S1359-6446(03)02858-7
- Tiseo, P. J., Rogers, S. L. and Friedhoff, L. T. (1998). Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br. J. Clin. Pharmacol. 46, 13-18. https://doi.org/10.1046/j.1365-2125.1998.0460s1013.x
Cited by
- The Acetylcholinesterase Inhibitors Competitively Inhibited an Acetyl l-Carnitine Transport Through the Blood–Brain Barrier vol.37, pp.7, 2012, https://doi.org/10.1007/s11064-012-0723-3
- Rivastigmine Transdermal Patch 13.3 mg/24 h: A Review of Its Use in the Management of Mild to Moderate Alzheimer’s Dementia vol.31, pp.8, 2014, https://doi.org/10.1007/s40266-014-0197-x
- 6-Mercaptopurine Transport by Equilibrative Nucleoside Transporters in Conditionally Immortalized Rat Syncytiotrophoblast Cell Lines TR-TBTs vol.100, pp.9, 2011, https://doi.org/10.1002/jps.22631
- Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity vol.15, pp.6, 2014, https://doi.org/10.3390/ijms15069809
- Docking-based design and synthesis of galantamine-camphane hybrids as inhibitors of acetylcholinesterase 2017, https://doi.org/10.1111/cbdd.12991
- Rivastigmine Transdermal Patch vol.71, pp.9, 2011, https://doi.org/10.2165/11206380-000000000-00000
- Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database vol.33, pp.1, 2018, https://doi.org/10.1080/14756366.2018.1458031
- Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier vol.27, pp.3, 2010, https://doi.org/10.4062/biomolther.2019.007
- Inhibiting Acetylcholinesterase to Activate Pleiotropic Prodrugs with Therapeutic Interest in Alzheimer’s Disease vol.24, pp.15, 2010, https://doi.org/10.3390/molecules24152786
- Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients vol.38, pp.8, 2010, https://doi.org/10.1080/07391102.2019.1633408
- A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders vol.26, pp.7, 2010, https://doi.org/10.3390/molecules26071865