• Title/Summary/Keyword: Efficiency of ventilation

Search Result 402, Processing Time 0.026 seconds

Airborne infection risk of respiratory infectious diseases and effectiveness of using filter-embeded mechanical ventilator and infectious source reduction device such as air cleaner (실내 공간에서의 호흡기 감염병 공기전파감염 위험도와 공기정화장치(필터 임배디드 기계식 환기설비 및 공기청정기 등 실내 감염원 저감 장치) 사용에 따른 효율)

  • Park, Sungjae;Park, Geunyoung;Park, Dae Hoon;Koo, Hyunbon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.73-94
    • /
    • 2020
  • Particulate infectious sources, including infectious viruses, can float in the air, causing airborne infections. To prevent indoor airborne infection, dilution control by ventilation and indoor air cleaners are frequently used. In this study, the risk of airborne infection by the operation of these two techniques was evaluated. In case of dilution control by ventilation, a high efficiency air filter was embedded at the inlet of supply air. In this study, infectious source reduction devices such as indoor air cleaner include all kinds of mechanical-filters, UV-photo catalysts and air ionizers through which air flow is forced by fans. Two mathematical models for influenza virus were applied in an infant care room where infants and young children are active, and the risk reduction efficiency was compared. As a result, in the case of individually operating the ventilator or the infectious source reduction device, the airborne infection risk reduction efficiencies were 55.2~61.2% and 53.8~59.9%, respectively. When both facilities were operated, it was found that the risk of airborne infection was reduced about 72.2~76.8%. Therefore, simultaneous operation of ventilation equipment and infectious source reduction device is the most effective method for safe environment that minimizes the risk of airborne infection of respiratory infectious diseases. In the case of a space where sufficient ventilation operation is difficult, it was found that the operation of an infectious source reduction device is important to prevent the spread of infectious diseases. This study is meaningful in that it provides an academic basis for strategies for preventing airborne infection of respiratory infectious diseases.

Analysis of Heating Load of a Naturally Ventilated Broiler House using BES Simulation (BES 기법을 이용한 자연환기식 육계사의 난방에너지 분석)

  • Hong, S.W.;Lee, I.B.;Hong, H.K.;Seo, I.H.;Hwang, H.S.;Bitog, J.P.;Yoo, J.I.;Kwon, K.S.;Ha, T.H.;Kim, K.S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Most of the broiler houses in Korea have experienced problems on controlling the environmental conditions such as suitability, stability and uniformity of rearing condition inside the broiler house. It is very critical which if not properly controlled, would cause serious stress on the chickens. It is therefore urgent to develop optimum designs of naturally ventilated broiler house which is appropriate to the four seasons of Korea. Field experiment for this matter is very difficult to conduct due to the unpredictable and uncontrollable weather condition. In this study, the heating load of a naturally ventilated broiler house was calculated using TRANSYS 15 BES program while internal climate and thermal condition were computed using Fluent 6.2. The computed resulted of the conventional ventilation system (A) and upgraded ventilation system (B) (Seo et al, 2007) were compared with each other for cold season. The results of the Building Energy Simulation(BES) indicated that the system B, the upgraded ventilation system made 8% lower total heating load and 47% lower at only the broiler zone compared to the conventional broiler house. Considering the entire broiler house, the existence of middle ceiling made the heating energy 11% lower required than without middle ceiling. Accordingly, the system B with middle ceiling was found to save heating energy by 20% in average. This study showed that the BES program can be a very powerful to effectively compute the energy loads of agricultural building while the energy load is very close related to ventilation efficiency.

A Case Study on the Construction of Large Cross Section Tunnel for Underground Ventilation System (지하환기소 대단면 터널 시공 사례 연구)

  • Noh, Seung Hwan;Choi, Sung Wook;Noh, Sang Lim
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • This case study introduces the construction of large cross section tunnel for underground ventilation system in Sillim-Bongcheon Tunnel Project. In order to grant the safety and efficiency in connecting the ventilation shaft (7.8 m of width, and 6.6 m of height) to a tunnel for axial fan facility (20.8 m of width, and 12.3 m of height), gradual enlargement of tunnel cross section was employed between those and temporary support method was determined based on Q system. In addition, some original designs were revised during construction stage to improve the efficiency of excavation in large cross section tunnel. The advance length was optimized and top heading of the tunnel was excavated without partition in accordance with ground condition and numerical stability analysis results. It is believed that some experiences and considerations in this case study will be useful for the future design and construction in similar large cross section tunnel such as large underground ventilation system or road tunnel with four lanes.

The Individual Heat-recovery ventilation system of Residential Buildings (주거용 건물의 개별 환기시스템 필요성에 관한 연구)

  • Shin, U-Cheul;Lee, Wang-Je;Yoon, Jong-Ho;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 2014
  • Recently supply of low energy house is increasing which can enhance energy efficiency and indoor environment comfort. Low energy house have to secure air tightness as well as thermal performance so house become high airtightness and inevitably need heat recovery ventilator to enhance indoor air quality. However, most of current ventilation systems are one-click, controlling the entire space so it causes increasing of heating load and fan power which makes it hard to save energy. Thus, Individual Control system is required which can achieve both enhancing indoor air quality and decreasing heating load and electric fan power. Thereby, in this study, we analyzed the correlation between ventilation and fan power through mock-up experiment and measured ventilation load under individual control system. As a result, under the condition of $24^{\circ}C$ of indoor temperature for 6 month(November to April) in Daejeon, ventilation load by fan speed was $10.9{\sim}19.6kWh/m^2{\cdot}a$ when operated 24 hours and $7.6{\sim}13.7kWh/m^2{\cdot}a$ when operated 12 hours in night time. In addition, it is possible to reduce at most 60% of ventilation load under the individual control system; measured ventilation load was $7.4kWh/m^2{\cdot}a$ when operated 24 hours, and $5.5kWh/m^2{\cdot}$ when operated 12 hours in night time.

Investigation of Ventilation Efficiency for the Natural Gas High Pressure Release in an Underground Valve Station (지하 공급관리소내 천연가스 고압분출시 환기효율성 검증)

  • Ha J. M.;Lee J. H.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.74-80
    • /
    • 2002
  • This study was carried out for the purpose of safety evaluation about the ventilation system (according to the structure of confined room, the position and size of vent window, the amount of blowing air, e.t.c.), which is equipped in one of KOGAS underground valve stations. Particularly, the effect of the fans placed in the upper region was focused in detail. Numerical simulation was conducted in order to predict the features of flow pattern and the diffusion of natural gas concentration. This work examined the ventilation system and resulted in proposing an optimal design of ventilation system.

  • PDF

An experimental study on the performance of the separate type heat pipe in accordance with the refrigerant charge (냉매 충진량에 따른 분리형 히트파이프 성능에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1600-1604
    • /
    • 2015
  • As modern houses are constructed with high-density and high-insulation, there is benefit to reduce energy consumption, but there are many side effects raised from polluted air. To solve the problem, a ventilation system is used to improve a indoor air quality. In this research, we experimentally estimate ventilation performance of HRV(heat recovery ventilator) with heat-pipe according to working fluid filling quantity and ventilation. Heat-pipe used in this study was designated separately to be applied to a ventilation system. The working fluid was R22, which was filled from 40 to 55 (%vol.) by 5(%vol.). Ventilation based on the front velocity was measured from 0.3 m/s to 1.5 m/s by 0.3 m/s intervals. Refrigerant filling quantity with the highest efficiency was found to depend on the ventilation. From this study the optimal refrigerant filling quantity in accordance with the ventilation of the detachable heat pipes was found experimentally.

분배계통에 따른 지하주차장 환기설비 성능의 예측

  • 김경환;이재헌;오명도;김종필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.982-992
    • /
    • 2001
  • In this paper, the performance of ventilation equipments in enclosed parking garages were investigated for several air distribution systems by numerical method. Air change effectiveness of the non-mixing system was 0.42. It meant that more supply air as much as the design supply air was needed to maintain good indoor air quality. In the high speed nozzle ventilating system which is most expensive one, air change effectiveness was 0.54. Therefore this system satisfied to ventilation design. In the jet fan ventilating systems, air change effectiveness for jet fan ventilating system-A with 18 jet fans and jet fan ventilating system-B with 6 jet fans in circulation mixing arrangement were 0.565 and 0.42 respectively. Jet fan ventilating system-C with 6 jet fans in transport mixing arrangement was 0.535. Jet fan ventilating system-A and jet fan ventilating system-C met the ventilation design. But velocity in jet fan ventilating system-A was over 2.0m/s which is inappropriate in human comfort. Therefore this system is not proper to ventilation. Jet fan ventilating system-C was the optimum one for enclosed parking garages among 5 systems examined in this paper.

  • PDF

Feed Bin impact of ventilation on the temperature and humidity management (피드빈 온습도 관리에 미치는 환기 시스템의 영향)

  • Kim, Jeong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6432-6438
    • /
    • 2015
  • In this paper, we analyzed by measuring the temperature and humidity inside of the Feed Bin, NV, EA, SA, $SA{\cdot}EA$, by applying the ventilation system offers an efficient management of the operating direction. In the period the target is not input and feed period to make a change in the Feed Bin within the temperature and humidity of the outdoor air temperature and relative humidity compared to accept the ventilation system. Internal temperature over a comparison of the external temperature and the relative humidity is $SA{\cdot}EA$, internal humidity can verify the efficiency and NV, SA ventilation applied.

A Study on The Performance of a Heat Recovery Ventilator According to the Properties of Spacers (스페이서의 재질변화에 따른 전열교환기 성능변화에 관한 연구)

  • Lim, Tae-Kun;Jeon, Byung-Heon;Kim, Jong-Won;Jung, Sung-Hak;Lee, Seung-Kap;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.224-229
    • /
    • 2012
  • The importance of ventilation system is being emphasized by interest of indoor air quality. Especially, heat recovery ventilation system has attracted attention as most effective ventilation plan. Because it can reduce hazardous construction materials, indoor air pollutions, and also can reduce air conditioning energy cost. In heat recovery ventilator, the element core is the most important part. The element core is composed of liner and spacer. And liner and spacer are stacked alternately. On the Liner, heat and humidity transfer are made between supply and exhaust air. And spacer plays a role as a tunnel of exhaust and supply. In this study, we investigated and analyzed the efficiency of a heat recovery ventilator, when the spacer's properties are changed. As a result, difference spacer's properties affect an efficiency of heat recovery ventilator.

A Study on the ecological design elements of elementary school interior - Focused on the elementary schools of Osaka, Japan and Busan, Korea - (초등학교 실내공간 디자인의 환경친화적 특성에 관한 연구 - 부산시와 오사카시 초등학교 사례를 중심으로 -)

  • Yun Ji-Young;Song Ju-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.46-54
    • /
    • 2005
  • This study explored how the elementary schools provided proper interior environments to the students in terms of ecological aspects. 14 cases-7 in Busan and 7 in Osaka which were newly built or remodelled since 2000 were selected. These schools were analyzed based on the eco-school guideline suggested In the former study. The guideline categorizes into three parts: 1) energy efficiency related with lighting, ventilation, heating and insulation, 2) greening, 3) sustainability including recycling water system and use of environmentally friendly materials. The results showed that Korean schools require more systematic planning for natural lighting, ventilation, Insulation, greening and new water system while Japanese schools need use of environmentally friendly materials and consideration for natural lighting, insulation and interior greening. Especially, natural lighting and natural ventilation through roof window, atrium, wind tower and use of natural insulation and blind window system should be basically considered at the Initial planning. Also, this study reveals that ecological approach including greening and natural lighting with various architectural form should be applied in future elementary school design to make the school environment more agreeable and economical.