• Title/Summary/Keyword: Effective residual dispersion range

Search Result 18, Processing Time 0.022 seconds

Transmission Distance Depending on Transmission Capacityin Inline Dispersion Managed WDM Systems (Inline 분산 제어가 적용된 WDM 시스템에서 전송 용량에 따른 전송 거리)

  • Lee, Seong-Real;Cho, Sung-Eon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.959-966
    • /
    • 2009
  • Effective transmission distance depending on transmission capacity of WDM systems with inline dispersion management (DM) and optical phase conjugator (OPC) at middle of total transmission length is investigated. The range of net residual dispersion (NRD) resulting 1 dB eye opening penalty (EOP) in 1 Tbps WDM system, in which NRD controlled by only postcompensation, is also investigated. It is confirmed that effective transmission distances are increasedto longer than several hundreds kilometers by applying optimal NRD depending on transmission capacity and distance. And it is confirmed that in 1 Tbps WDM system if NRD is determined to +17 ps/nm, the maximum transmission distance is achieved, and, especially, in long-haul 1 Tbps WDM system the effective NRD range will be determined within positive value.

Design of Dispersion Managed Optical Link for Wideband WDM Transmission (대용량 WDM 전송을 위한 분산 제어 광 링크 구조 설계)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.201-207
    • /
    • 2008
  • Design rule of optical transmission link consisted of dispersion management (DM) controlling accumulated dispersion in total fiber length by precompensation and postcompensation, and optical phase conjugator (OPC) positioned at mid-way are proposed. DM schemes investigated in this paper are 2 types depending on the position of precompensation and postcompensation; bi-end type and concentration type. It is confirmed that effective residual dispersion ranges, as a design parameter of optical link, of transmission section from transmitter to OPC and transmission section from OPC to receiver are independence on the positions of dispersion compensating fiber (DCF) accomplishing precompensation and postcompensation, if both DCF position is symmetry with respect to OPC.

  • PDF

Optimization of Net Residual Dispersion and Launching Power Depend on Total Transmission Length and Span Length in Optical Transmission Links with Dispersion Management and Optical Phase Conjugation (분산 제어와 광 위상 공액이 적용된 광전송 링크에서 총 전송 거리와 중계 간격에 따른 전체 잉여 분산과 입사 전력의 최적화)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1433-1441
    • /
    • 2011
  • Design rules of optical transmission links with dispersion management (DM) and optical phase conjugation (OPC) for compensating optical signal distortion due to chromatic dispersion and self phase modulation (SPM) of single mode fiber (SMF) are investigated in this paper. Design rules consist of optimal net residual dispersion (NRD) and optimal range of launching power of wavelength division multiplexed (WDM) channels as a function of total transmission length and span length. In all considered total transmission length and span length, optimal NRD are obtained to +10 ps/nm and -10 ps/mn for transmission links, which is controlled by precompensation and postcompensation, respectively. It is confirmed that system performances are more improved and effective NRD for wide launching power have wider range as total transmission length and span length are more decreased.

Performance Improvement of WDM Signals through Precompensation and Postcompensation in Dispersion Managed Optical Transmission Links with Artificial Distribution of Single Mode Fiber Length and RDPS (인위적인 단일 모드 광섬유 길이와 RDPS 분포를 갖는 분산 제어 광전송 링크에서 선치 보상과 후치 보상을 통한 WDM 신호의 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2293-2302
    • /
    • 2012
  • New optical transmission links technique for compensating of the distorted wavelength division multiplexed (WDM) signals due to group velocity dispersion (GVD) and self phase modulation (SPM) in single mode fiber (SMF) are proposed. The proposed optical links have optical phase conjugator (OPC) placed at nearby WDM transmitter or receiver and repeater spans with artificial distribution of SMF length and residual dispersion per span (RDPS). It is confirmed that optimal link configuration expanding effective launching power range and effective net residual dispersion (NRD) by improving system performance is that having OPC closely placed at WDM receiver and the gradually descended distribution of SMF length and RDPS of each repeater spans, related with the gradually increased optical link length. And, it is also confirmed that NRD is controlled by postcompensation in optimal optical link with OPC closely placed at WDM receiver.

System Performance Improvements in WDM ($24{\times}40$ Gbps) Transmission using Optical Phase Conjugator and Dispersion Management (WDM ($24{\times}40$ Gbps) 전송에서 광 위상 공액기와 분산 제어를 이용한 시스템 성능 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.855-864
    • /
    • 2008
  • Optical link techniques compensating chromatic dispersion and nonlinear effects, which affect distortion of optical signals, generated in single mode fiber are investigated through computer simulation and design rule of these link techniques is proposed for implementation of wideband and long-haul WDM ($24{\times}40$ Gbps) transmission system. The optical link consist of dispersion management (DM) compensating the cumulated dispersion through total transmission line and optical phase conjugation in middle of total transmission line for compensating distorted signals by frequency inversion. DM schemes considered in this research are lumped DM and inline DM. It is confirmed that eye opening penalty (EOP) of overall WDM channels are more improved than those in WDM transmission systems with only optical phase conjugator (OPC), if DM is additionally applied to these systems. And, design rule in both DM schemes are proposed by using effective residual dispersion range. It is confirmed that inline DM is better than lumped DM in the improving EOP of total WDM channels and in effective residual dispersion range.

40 Gbps RZ Transmission Using Dispersion Compensation of Single-Span in Optical Transmission Links with Multi-Span of Single Mode Fiber

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • In dispersion management (DM) and optical phase conjugation applied into optical transmission links with multi fiber spans for minimizing the impact of nonlinearity and group velocity (GVD), implementation possibility of DM using only one fiber span for pre- or postcompensation was assessed as a function of duty cycle of RZ pulse and residual dispersion per span (RDPS). It is confirmed that DM with optimal net residual dispersion (NRD) controlled by only one fiber span could be sufficiently applied into optical transmission links, though optimal NRD is more increased than that in transmission links with the general DM scheme of pre- and postcompensation. Thus, it is expected that optical transmission system is simply designed and implemented by applying the proposed DM scheme into real optical transmission links. Also, it is confirmed that the advantageous duty cycle of RZ is 0.5 and RDPS is setting to be small value for the effective transmitting wide signal wavelength range in optical links with optimal NRD controlled by only one fiber span.

Improvement of System Performance Through Concentrated RDPS in WDM Transmission Links with Dispersion Management (분산 제어가 적용된 WDM 전송 링크에서 집중 RDPS를 통한 시스템 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.971-980
    • /
    • 2013
  • System performance improvement through the concentrated residual dispersion per span (RDPS) in special transmission fiber spans in optical transmission links with dispersion management (DM) for wavelength division multiplexed (WDM) transmission is investigated through the comparison with the performance in optical transmission links with uniform RDPS in every fiber spans. It is confirmed that, in optical links with RDPS of 0 ps/nm uniformly distributed in the rest fiber spans, if RDPS of 300 ps/nm and 1,320 ps/nm are concentrated in 5th-13th fiber spans and 6th-13th fiber spans, respectively, then the best performance is obtained. It is also confirmed that optimal net residual dispersion (NRD) controlled by precompensation and postcompensation are 10 ps/nm and -10 ps/nm, respectively, in all two cases, and the effective launching power range below 1 dB eye opening penalty (EOP) in the concentrated RDPS of 300 ps/nm and 1,320 ps/nm are improved by 2 dB and 6 dB than optical transmission links with the uniformly distributed RDPS, respectively.

The effect of young stellar populations in Early-type galaxies

  • Suh, Hye-Won;Jeong, Hyun-Jin;Oh, Kyu-Seok;Yi, Suk-Young K.;Ferreras, Ignacio;Schawinski, Kevin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00$H{\beta}$ absorption-line strengths and/or emission-line ratios that are indicative of the presence of young stellar populations. This implies that most of the residual star formation in early-type galaxies is centrally concentrated. Blue-cored galaxies are predominantly low-velocity dispersion systems. A simple model shows that the observed positive color gradients are visible only for a billion years after a star formation episode for the typical strength of recent star formation. The observed effective radius decreases and the mean surface brightness increases due to this centrally concentrated star formation episode. As a result, the majority of blue-cored galaxies may lie on different regions in the fundamental plane (FP) from red-cored ellipticals. However, the position of the blue-cored galaxies on the FP cannot be solely attributed to recent star formation but requires substantially lower velocity dispersion. We conclude that a low-level of residual star formation persists at the centers of most of low-mass early-type galaxies, whereas massive ones are mostly quiescent systems with metallicity-driven red cores.

  • PDF