• Title/Summary/Keyword: Effective length factor

Search Result 262, Processing Time 0.023 seconds

Effective Length Factors of Framed Columns with Sinusoidally Tapered Sections (정현상 변단면 기둥의 유효길이 계수)

  • 박재영;송상용;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.243-250
    • /
    • 2003
  • A method for the determination of effective length factors of the framed columns with sinusoidally tapered sections is proposed. In the study, the stability analysis of the single story-two equal bay, frame with tapered columns is performed first by finite element method. The changes of the critical load coefficients of frames are reprersented by algebraic equations of the analysis parameters. The effective length factor formula is expressed in terms of proposed algebraic equation. The effective length factors for the prismatic columns (α=0.0) estimated by the proposed method coincide fairly well with those determined by the analytical method.

  • PDF

Limitation of effective length method and codified second-order analysis and design

  • Chan, S.L.;Liu, Y.P.;Zhou, Z.H.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.181-192
    • /
    • 2005
  • The effective length method for flexural (column) buckling has been used for many decades but its use is somewhat limited in various contemporary design codes to moderately slender structures with elastic critical load factor (${\lambda}_{cr}$) less than 3 to 5. In pace with the use of higher grade steel in recent years, the influence of buckling in axial buckling resistance of a column becomes more important and the over-simplified assumption of effective length factor can lead to an unsafe, an uneconomical or a both unsafe and uneconomical solution when some members are over-designed while key elements are under-designed. Effective length should not normally be taken as the distance between nodes multiplied by an arbitrary factor like 0.85, 1.0, 2.0 etc. Further, the classification of non-sway and sway-sensitive frames makes the conventional design procedure tedious to use and, more importantly, limited to simple regular frames. This paper describes the practical use of second-order analysis with section capacity check allowing for $P-{\delta}$ and $P-{\Delta}$ effects together with member and system imperfections. Most commercial software considers only the $P-{\Delta}$ effect, but not member and frame imperfections nor $P-{\delta}$ effect, and engineers must be very careful in their uses. A verification problem is also given for validation of software for this type of powerful second-order analysis and design. It is a trend for popular and advanced national design codes in using the second-order analysis as a norm for analysis and design of steel structures while linear analysis may only be used in very simple structures.

A study on the visual effects according to changes in number of pleats and skirt length of pleats skirt (플리츠 스커트의 플리츠 수와 스커트 길이 변화에 따른 시각적 효과)

  • Kim, Kyung-Hee;Lee, Jung-Soon
    • Journal of Fashion Business
    • /
    • v.13 no.5
    • /
    • pp.81-92
    • /
    • 2009
  • The purpose of this study is to evaluate the differences of visual effects by variations in the number of pleats and the length of the pleats skirt. The stimuli are 18 samples: 6 variations of the number of pleats and 3 variations of the length of skirt. The data has been obtained from 54 fashion design majors. The data has been analyzed by Factor Analysis, Anova, Scheffe's Test and the MCA method. The results of the study are as follows: The visual effects by the number of pleats and the length of skirt are composed of 3 factors : vertical of lower body, curves of lower body and shape abdomen. In these factors, vertical factor is estimated by the most important factor. The visual effect is positive when the number of pleats is added and the length of skirt is getting shorter. The short length of skirt and more pleats make legs and calves looked long and slim. The interaction effects between the number of pleats and the length of skirt do not appear. In the vertical of low body factor, the length of skirt is more effective than the number of pleats, and in the curve of low body factor, the number of pleats has more effects than the length of the skirt. In the shape of abdomen, the number of pleats and length of skirt have similar influences.

Fuzzy logic based estimation of effective lengths of columns in partially braced multi-storey frames

  • Menon, Devdas
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.287-299
    • /
    • 2001
  • Columns in multi-storey frames are presently categorised as either braced or unbraced, usually by means of the stability index criterion, for estimating their effective length ratios by design aids such as 'alignment charts'. This procedure, however, ignores the transition in buckling behaviour between the braced condition and the unbraced one. Hence, this results in either an overestimation or an underestimation of effective length estimates of columns in frames that are in fact 'partially braced'. It is shown in this paper that the transitional behaviour is gradual, and can be approximately modelled by means of a 'fuzzy logic' based technique. The proposed technique is simple and intuitively agreeable. It fills the existing gap between the braced and unbraced conditions in present codal provisions.

A Study of Thermal Radiation from The Alumina Particle Cloud in The Plume Using View Factor Method (형상 계수를 이용한 알루미나 입자구름의 열복사 예측 기법 연구)

  • Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2044-2049
    • /
    • 2007
  • In order to predict the thermal radiation induced from alumina particle cloud in the plume of solid propellant motor, view factor method is applied to space shuttle SRB and the result is compared with that of monte carlo method. For this purpose, radiative characteristics, such as particle cloud temperature distribution, effective emissivity or emissive power of particle cloud are studied. In the case of effective emissivity, inverse wavelength method is applied and plume reduction characteristic length is used for emissive power distribution. As a result, thermal radiation using view factor method gives more conservative results than that using monte carlo method. So it can be used for preliminary design of thermal protection system.

  • PDF

Effective mode shapes of multi-storey frames subjected to moving train loads

  • Demirtas, Salih;Ozturk, Hasan
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.311-323
    • /
    • 2020
  • This paper deals with the effect of the mode shapes on the dynamic response of a multi-storey frame subjected to moving train loads which are modelled as loads of constant intervals with constant velocity using the finite element method. The multi-storey frame is modelled as a number of Bernoulli-Euler beam elements. First, the first few modes of the multi-storey frame are determined. Then, the effects of force span length to beam length ratio and velocity on dynamic magnification factor (DMF) are evaluated via 3D velocity-force span length to beam length ratio-DMF graphics and its 2D projections. By using 3D and 2D graphics, the directions of critical speeds that force the structure under resonance conditions are determined. Last, the mode shapes related to these directions are determined by the time history and frequency response graphs. This study has been limited by the vibration of the frame in the vertical direction.

Analysis of Discontinuity Distribution Property to Predict Rock Slope Failure (암반 사면의 파괴 예측을 위한 불연속면 분포 특성 분석)

  • 윤운상;김정환;배기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.147-152
    • /
    • 1999
  • Distribution of fracture system is an important factor to analyse instability of jointed rock slope. In the most case of rock slopes, joint distribution properties are related to potential, shape, size and locality of slope failure. The purpose of this paper is to present an application of fracture characterization related to rock slope failure. Fracture data used in this study are collected by scanline survey. Two aspects of fracture characterization for rock slope are handled in this study First, In order to determine the potential and shape of slope failure, trace length of joints is considered as the weighting factor about collected orientation data. Second, Relationship between trace length and spacing is analysed to estimate failure location and size. The distribution of fracture system is directly influenced on wedge failure. It is effective to analyse the orientation of fractures by using weighting factors associated with the trace length of fractures rather than to analyse only that of fractures. It gives a conclusion that the wedge failure occurred along the peak of fracture density(or intensity) cycles.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length (혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동)

  • 정의효
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method (양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구)

  • Kim, Kwang-Woo;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF