• Title/Summary/Keyword: Effective detection distance

Search Result 107, Processing Time 0.027 seconds

Fabrication of Nanogap-Based PNA Chips for the Electrical Detection of Single Nucleotide Polymorphism

  • Park, Dae-Keun;Park, Hyung-Ju;Lee, Cho-Yeon;Hong, Dae-Wha;Lee, Young;Choi, In-Sung S.;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.540-540
    • /
    • 2012
  • Selective detection of single nucleotide polymorphism (SNP) of Cytochrome P450 2C19 (CYP2C19) was carried out by the PNA chips which were electrically-interfaced with interdigitated nanogap electrodes (INEs). The INEs whose average gap distance and effective gap length were about ~70 nm and ${\sim}140{\mu}m$, respectively, were prepared by the combination of the photo lithography and the surface-catalyzed chemical deposition, without using the e-beam lithography which is almost inevitable in the conventional lab-scale fabrication of the INEs. Four different types of target DNAs were successfully detected and discriminated by the INE-based PNA chips.

  • PDF

Traffic Light Recognition Using a Deep Convolutional Neural Network (심층 합성곱 신경망을 이용한 교통신호등 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1244-1253
    • /
    • 2018
  • The color of traffic light is sensitive to various illumination conditions. Especially it loses the hue information when oversaturation happens on the lighting area. This paper proposes a traffic light recognition method robust to these illumination variations. The method consists of two steps of traffic light detection and recognition. It just uses the intensity and saturation in the first step of traffic light detection. It delays the use of hue information until it reaches to the second step of recognizing the signal of traffic light. We utilized a deep learning technique in the second step. We designed a deep convolutional neural network(DCNN) which is composed of three convolutional networks and two fully connected networks. 12 video clips were used to evaluate the performance of the proposed method. Experimental results show the performance of traffic light detection reporting the precision of 93.9%, the recall of 91.6%, and the recognition accuracy of 89.4%. Considering that the maximum distance between the camera and traffic lights is 70m, the results shows that the proposed method is effective.

Effective Road Distance Estimation Using a Vehicle-attached Black Box Camera (차량 장착 블랙박스 카메라를 이용한 효과적인 도로의 거리 예측방법)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.651-658
    • /
    • 2015
  • Recently, lots of research works have been actively focused on the self-driving car. In order to implement the self-driving car, lots of fusion techniques should be merged and, specially, it is noted that a vehicle-attached camera can provide several useful functionalities such as traffic lights recognition, pedestrian detection, stop-line recognition including simple driving records. Accordingly, as one of the efficient tools for the self-driving car implementation, this paper proposes a mathematical model for estimating effectively the road distance with a vehicle-attached black box camera. The proposed model can be effectively used for estimating the road distance by using the height of black box camera or the widths of the referenced road line and the observed road line. Through several simulations, it is shown that the proposed model is effective in estimating the road distance.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

Target Detection Based on Moment Invariants

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.677-680
    • /
    • 2003
  • Perceptual landmarks are an effective solution for a mobile robot realizing steady and reliable long distance navigation. But the prerequisite is those landmarks must be detected and recognized robustly at a higher speed under various lighting conditions. This made image processing more complicated so that its speed and reliability can not be both satisfied at the same time. Color based target detection technique can separate target color regions from non-target color regions in an image with a faster speed, and better results were obtained only under good lighting conditions. Moreover, in the case that there are other things with a target color, we have to consider other target features to tell apart the target from them. Such thing always happens when we detect a target with its single character. On the other hand, we can generally search for only one target for each time so that we can not make use of landmarks efficiently, especially when we want to make more landmarks work together. In this paper, by making use of the moment invariants of each landmark, we can not only search specified target from separated color region but also find multi-target at the same time if necessary. This made the finite landmarks carry on more functions. Because moment invariants were easily used with some low level image processing techniques, such as color based target detection and gradient runs based target detection etc, and moment invariants are more reliable features of each target, the ratio of target detection were improved. Some necessary experiments were carried on to verify its robustness and efficiency of this method.

  • PDF

Intelligent Hexapod Mobile Robot using Image Processing and Sensor Fusion (영상처리와 센서융합을 활용한 지능형 6족 이동 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • A intelligent mobile hexapod robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Distance-based SAP Algorithm for Effective Collision Detection (효율적인 충돌 검출을 위한 거리 기반 SAP 알고리즘)

  • Oh, Min-Seok;Park, Sung-Jun
    • Journal of Korea Game Society
    • /
    • v.12 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • The collision processing is one of the essential factors to realize physical principles in the game, and it gives liveliness to the game. The collision processing requires a large amount of operations, and significantly affects the game performance. To address this problem, many studies have been conducted to reduce the operation volume, and the SAP algorithm is being widely used. However, its efficiency is low because it involves repetitive operations. In this study, a distance-based SAP algorithm was proposed to reduce the operation volume for the collision processing and address the problem of the SAP algorithm. A test was conducted to measure the FPS using the simulation program, which was developed with the proposed algorithm. The FPS was 2-33 times higher with the proposed algorithm, which indicated that the efficiency of the collision processing was improved.

Realization for Moving Object Sensing and Path Tracking System using Stereo Line CCDs (스테레오 라인 CCD를 이용한 이동객체감지 및 경로추적 시스템 구현)

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2050-2056
    • /
    • 2008
  • A realization for moving object sensing and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. The system is realized that instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object sensing, path tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution, and enables to track a moving path of object per looms period.

Defect Detection of ‘Fuji’ Apple using NIR Imaging(I) -Optical characteristics of defects and selection of significant wavelelength- (근적외선 영상을 이용한 후지사과의 결점 검출에 관한 연구 (I) -결점의 광학적 특성 구명 및 유의파장 선정-)

  • 이수희;노상하
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • Defect of apple was depreciated the product value and causes storage disease seriously. To detect the defect of ‘Fuji’apple with machine vision system, the optical characteristics of defect should be investigated. In this research, absorbance spectra of defect were acquired by spectrophotometer in the range of visible and NIR region(400∼1,100nm) and L*a*b* color values were also acquired by colorimeter. NIR machine vision system was constructed with B&W camera, frame grabber, 16 tungsten-halogen lamps, variable focal length lens and NIR bandpass filter which was mounted to lens outward. Average gray values of defect at 15 NIR wavelength were acquired and the significant NIR wavelength was selected by comparing Mahalanobis distance between sound and defective apple. As the result of Mahalanobis distance analysis, the significant wavelength to discriminate the defectives in ‘Fuji’apple were found to be 720nm for scab and 970nm for bruise and cuts and 920nm was also effective regardless of defective types.

  • PDF

A Study about the Construction of Intelligence Data Base for Micro Defect Evaluation (미소 결함 평가를 위한 지능형 데이터베이스 구축에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.585-590
    • /
    • 2000
  • Recently, It is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic Signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of Ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research, considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic Signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness, sound velocity, and step height, regardless of interference phenomenon. Numeral information was deduced and quantified effective information from the image. Also, pattern recognition of a defected input image was performed by neural network algorithm. Input pattern of various numeral was composed combinationally, and then, it was studied by neural network. Furthermore, possibility of pattern recognition was confirmed on artifical defected input data formed by simulation. Finally, application on unknown input pattern was also examined.

  • PDF