• Title/Summary/Keyword: Effective Velocity

Search Result 1,527, Processing Time 0.028 seconds

The effect of air velocity on the thermal resistance of wool ensembles (풍속변화에 따른 순모의류의 온열특성)

  • 송민규;전병익
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The purpose of the study was to determine the effect of air velocity on the thermal resistance of wool ensembles. Three suits for men with different weaving structure and density were made with the same design and size for the study. In addition, Y-shirt, underwear, and socks were prepared for constructing the ensembles. Thermal insulation of air layer and 3 ensembles were measured by using thermal manikin in environmental chamber controlled at 2$0^{\circ}C$ and 65% RH with various air velocity. The results were as follows: 1. Thermal resistance of air layer was 0.079 m2.$^{\circ}C$/W with no air velocity(less than 0.2m/sec). 2. Thermal resistance of air layer decreased with increasing the air velocity rapidly. When the air velocity was 0.25 and 2.89 m/sec, the decreasing rate was 15% and 61%, respectively compared with no air velocity. 3. While there was little difference among the effective thermal insulation of 3 ensembles having different weaving structure and density with no air velocity, there was sharp difference among them when the air velocity increased. That is, the decreasing rate of effective thermal insulation of the ensemble which has higher air permeability was higher. 4. The decreasing rates of the effective thermal resistances of plain, twill and satin ensemble were 61, 54, and 49%, respectively when the air velocity was 2.89 m/sec which was a maximum air velocity in this study.

  • PDF

Prediction of the Effective Wake of an Axisymmetric Body (축대칭 몰수체의 유효반류 추정)

  • Kim, Ki-Sup;Moon, Il-Sung;Ahn, Jong-Woo;Kim, Gun-Do;Park, Young-Ha;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.410-417
    • /
    • 2019
  • An axisymmetric submerged body(L=5.6m, Diam=0.53m) is installed in Large Cavitation Tunnel (LCT) of KRISO and the nominal and total velocities without and with the propeller in operation, respectively, are measured using Laser Doppler Velocimeter (LDV). The flow field is nearly axisymmetric except the wake of the supporting strut, and is considered ideal to study the hydrodynamic interaction between the propeller and the oncoming axisymmetric sheared flow. The measured velocity data are then provided to compute the propeller-induced velocity to get the effective velocity, which is defined by subtracting the propeller-induced velocity from the total velocity. We adopted, in computing the induced velocity, two different methods including the vortex lattice method and the vortex tube actuator model to evaluate the resultant effective velocity distribution. To secure a fundamental base of experimental data necessary for the research on the effective wake, we measured the drag of the submerged body, the nominal and total velocity distributions at various axial locations for three different tunnel water speeds.

The Effect of Serrated Fins on the Flow Around a Circular Cylinder

  • Boo, Jung-Sook;Ryu, Byong-Nam;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.925-934
    • /
    • 2003
  • An experimental study is performed to investigate the characteristics of near wake flow behind a circular cylinder with serrated fins using a constant temperature anemometer and flow visualization. Various vortex shedding modes are observed. Fin height and pitch are closely related to the vortex shedding frequency after a certain transient Reynolds number. The through velocity across the fins decreases with increasing fin height and decreasing fin pitch. Vortex shedding is affected strongly by the velocity distribution just on top of the finned tube. The weaker gradient of velocity distribution is shown as increasing the freestream velocity and the fin height, while decreasing the fin pitch. The weaker velocity gradient delays the entrainment flow and weakens its strength. As a result of this phenomenon, vortex shedding is decreased. The effective diameter is defined as a virtual circular cylinder diameter taking into account the volume of fins, while the hydraulic diameter is proposed to cover the effect of friction by the fin surfaces. The Strouhal number based upon the effective diameters seems to correlate well with that of a circular cylinder without fins. After a certain transient Reynolds number, the trend of the Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter. The normalized velocity and turbulent intensity distributions with the hydraulic diameter exhibit the best correlation with the circular cylinder's data.

Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Lee, Jong-Sub;Cho, Tae-Hyeon;Lee, Jeong-Hark;Kim, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

Prediction of Hindered Settling Velocity of Bidisperse Suspensions (이중 입도 분포를 가진 현탁액의 침강 속도 예측)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.609-616
    • /
    • 2008
  • The present study is concerned with a simple numerical method for estimating the hindered settling velocity of noncolloidal suspensions with bidisperse size distribution of particles. The method is based on an effective-medium theory which uses the conditional ensemble averages for describing the velocity fields or other physical quantities of interest in the suspension system with the particles randomly placed. The effective-medium theory originally developed by Acrivos and Chang[1] for monodisperse suspensions is modified for the bidisperse case. Using the radial distribution functions and stream functions the hindered settling velocity of the suspended particles is calculated numerically. The predictions by the present method are compared with the previous experimental results by Davis and Birdsell[2] and Cheung et al.[3]. It is shown that the estimations by the effective-medium model of the present study reasonably agree with the experimental results.

The Effects of Isokinetic Exercise Program on the Muscle Strength and Blood Constituent by the Relatively Angular Velocities

  • Ryu, Jae-Ki;Jung, Byeong-Ok
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • The purpose of this study was to investigate the effects of angular velocity on muscle strength and blood constituent. Subjects was classified into two groups, which were $60^{\circ}/sec$ angular velocity group (n=8), and $240^{\circ}/sec$ angular velocity group (n=8). Each group was applied to perform the isokinetic exercises on extensor muscle group for each 7 times in 10 set (3 days per a week for 3 weeks). Muscle strength was measured using peak torque of quadriceps femoris and blood constituent was measured using RBC, WBC and Hb. The peak torque was more significantly increased after 3 weeks application of $60^{\circ}/sec$ angular velocity group than $240^{\circ}/sec$ angular velocity group. The RBC and Hb were more significantly increased after 3 weeks application of $60^{\circ}/sec$ angular velocity group than $240^{\circ}/sec$ angular velocity group. But WBC was more significantly increased after 3 weeks application of $240^{\circ}/sec$ angular velocity group than $60^{\circ}/sec$ angular velocity group. These results indicate that $60^{\circ}/sec$ angular velocity isokinetic exercise application were effective treatment strategy on increase of muscle strength. But $240^{\circ}/sec$ angular velocity isokinetic exercise application were effective treatment strategy on immune protect system.

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures (생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석)

  • Lee, Jong-Won;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1245-1255
    • /
    • 2012
  • Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.