DOI QR코드

DOI QR Code

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures

생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석

  • 이종원 (인하대학교 기계공학과) ;
  • 범현규 (인하대학교 기계공학과)
  • Received : 2012.07.04
  • Accepted : 2012.08.20
  • Published : 2012.11.01

Abstract

Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.

Keywords

References

  1. Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., and Aksay, I. A., "Deformation mechanisms in nacre," J. Mater. Res., Vol. 16, pp. 2485-2493, 2001. https://doi.org/10.1557/JMR.2001.0340
  2. Barthelat, F., Tang, H., Zavattieri, P. D., Li, C.-M., and Espinosa, H. D., "On the mechanics of mother-ofpearl: A key feature in the material hierarchical structure," J. Mech. Phys. Solids, Vol. 55, pp. 306-337, 2007. https://doi.org/10.1016/j.jmps.2006.07.007
  3. Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E., and Fratzl, P., "Materials become insensitive to flaws at nanoscale: lessons from nature," Proc. National Academy of Sciences of the United States of America, Vol. 100, pp. 5597-5600, 2003. https://doi.org/10.1073/pnas.0631609100
  4. Flocker, F. W. and Dharani, L. R., "Modeling Fracture in Laminated Architectural Glass Subject to Low Velocity Impact," J. Mater. Sci., Vol. 32, pp. 2587-2594, 1997. https://doi.org/10.1023/A:1018698900942
  5. Chiu, S. T., Liou, Y. Y., Yuan, C. C., and Ong, C. L., "Low Velocity Impact Behavior of Prestressed Composite Laminates," Mater. Chem. Phys., Vol. 47, pp. 268-272, 1997. https://doi.org/10.1016/S0254-0584(97)80063-6
  6. Gao, H. and Ji, B., "Mechanical properties of nanostructure of biological materials," J. Mech. Phys. Solids, Vol. 52, pp. 1963-1990, 2004. https://doi.org/10.1016/j.jmps.2004.03.006
  7. Gao, H. J., "Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials," Int. J. Fract., Vol. 138, pp. 101-137, 2006. https://doi.org/10.1007/s10704-006-7156-4
  8. Lee, D. R. and Beom, H. G., "Numerical Analysis of Effective Elastic Constants of Bone-Like Biocomposites," J. of the KSPE, Vol. 28, No. 11, pp. 1288-1296, 2011.
  9. Sun, C. T., "An Analytical Method for evaluation of impact damage energy of laminated composite," ASTM Special Technical Publication, Vol. 617, pp. 427-440, 1977.
  10. Yang, S. H. and Sun, C. T., "Indentation law for composite laminates," ASTM Special Technical Publication, Vol. 787, pp. 425-449, 1982.
  11. Tan, T. M. and Sun, C. T., "Wave propagation in graphite/epoxy laminates due to impact," NASA CR-168057, 1982.
  12. Sun, C. T. and Chen, J. K., "On the impact of initially stressed composite laminates," J. Compos. Mater., Vol. 19, pp. 490-504, 1985. https://doi.org/10.1177/002199838501900601