• 제목/요약/키워드: Effect of foundation stiffness

검색결과 118건 처리시간 0.03초

송전용 철탑기초의 현장수평재하시험을 통한 연결형 말뚝기초의 거동 및 지지력특성 (The Behavior and Resistance of Connected-pile Foundations for Transmission Tower from In-situ Lateral Load Tests)

  • 경두현;이준환;백규호;김대홍;김대학
    • 한국지반공학회논문집
    • /
    • 제28권2호
    • /
    • pp.57-70
    • /
    • 2012
  • 연약지반에 시공되는 송전철탑의 경우 말뚝기초가 주로 사용되나, 부등침하로 인한 철탑구조물의 손상이 유발될 수 있으며, 이에 따라 미국과 일본에서는 4각의 기초를 연결보로 연결한 연결형 기초의 사용을 추천하고 있다. 본 연구에서는 송전철탑에 작용하는 하중조건과 연결보의 강성조건이 연결형 말뚝기초의 수평거동에 미치는 영향을 조사하기 위해서 1/8 규모의 축소모델을 이용한 연결형 말뚝기초의 수평재하시험을 수행하였다. 본 시험결과 연결형 기초는 말뚝기초에 비하여 지지력이 크고 부등변위등의 송전철탑의 안전성을 저해하는 요인에 저항하는 효율적인 기초 형식인 것으로 나타났으며, 특히 연결보의 상대강성에 따른 효과를 분석한 결과 연결보의 강성이 매트의 강성대비 25%에서 연결형 기초의 형식으로 사용의 효율성이 좋은 것으로 나타났다.

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

Pasternak 탄성지지 하에서 비보존력계의 동적 안정성해석 (Dynamic Stability Analysis of Non-conservative Systems under Pasternak Elastic Foundations)

  • 이준석;김남일;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.73-80
    • /
    • 2004
  • Mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory non-conservative force, and Winkler and Pasternak foundation matrix of framed structure in 2-D are calculated for stability analysis of divergence or flutter system. Then, a matrix equation of the motion for the non-conservative system is formulated and numerical results are presented to demonstrate the effect of some parameters with using Newmark method.

  • PDF

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1429-1449
    • /
    • 2016
  • The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석 (Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis)

  • 김성민;심재수;박희범
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.695-702
    • /
    • 2006
  • 본 연구는 콘크리트 포장에 복륜 단축, 복륜 복축, 복륜 삼축 등 복륜 다축 차량 하중이 작용할 때 포장의 응력 분포와 최대 응력을 변환영역에서의 해석법을 이용하여 분석하였다. 우선 변환영역에서의 해석법을 이용한 결과와 유한요소법을 이용한 결과를 비교하여 해석법의 정확성을 파악하였다. 그리고 종방향과 횡방향을 따라 응력의 분포형태를 분석하고, 콘크리트 슬래브의 두께, 콘크리트 탄성계수, 지반 탄성계수 등이 응력 분포에 미치는 영향을 분석하였다. 또한 하중 접지면적과 연관된 하중 접지압의 변화에 따른 콘크리트 포장의 응력 분포도 분석하였으며 콘크리트 포장에서 최대 응력이 어느 위치에서 발생하는지에 대한 연구도 수행하였다. 연구 결과 다축 하중에 의한 콘크리트 포장의 최대 응력은 콘크리트의 탄성계수가 증가할수록, 슬래브의 두께가 감소할수록, 그리고 지반 탄성계수가 감소할수록 증가하였다. 이러한 변수 등이 변할 때 축수에 따른 최대 응력 비율의 변화는 대체적으로 미소하지만 지반 탄성계수가 작을 때는 축수가 증가 할수록 최대 응력 비율이 급격히 증가한다. 횡방향의 최대 응력 발생 위치는 일반적으로는 접지압이 증가하면 바깥쪽에서 안쪽으로 이동하며 콘크리트 탄성계수나 슬래브 두께가 증가하거나 지반 탄성계수가 감소할 때도 최대 응력 발생 위치는 바깥쪽에서 안쪽으로 이동한다. 종방향 상의 최대 응력 위치는 하중 접지압에 영향을 받지 않으며 단축과 복축 하중일 경우는 축의 위치이며 삼축 하중일 경우에는 콘크리트 탄성계수나 슬래브 두께가 증가하던지 또는 지반 탄성계수가 감소하면 최대 응력이 생기는 종방향 위치가 양쪽 바깥축에서 중간축의 위치로 바뀌게 된다.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Investigation of rotational characteristics of column 'PINNED' bases of steel portal frames

  • Liu, Timothy Chi-Ho
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.187-200
    • /
    • 2001
  • Most of the portal frames are designed these days by the application of plastic analysis, with the normal assumption being made that the column bases are pinned. However, the couple produced by the compression action of the inner column flange and the tension in the holding down bolts will inevitably generate some moment resistance and rotational stiffness. Full-scale portal frame tests conducted during a previous research program had suggested that this moment can be as much as 20% of the moment of resistance of the column. The size of this moment of resistance is particularly important for the design of the tensile capacity of the holding down bolts and also the bearing resistance of the foundation. The present research program is aiming at defining this moment of resistance in simple design terms so that it could be included in the design of the frame. The investigation also included the study of the semi-rigid behaviour of the column base/foundation, which, to a certain extent, affects the overall loading capacity and stiffness of the portal frames. A series of column bases with various details were tested and were used to calibrate a finite element model which is able to simulate the action of the holding down bolts, the effect of the concrete foundation and the deformation of the base plate.