• Title/Summary/Keyword: Effect of depth variation

Search Result 293, Processing Time 0.03 seconds

Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling (정면밀링에서 공구경사각에 따른 비절삭저항 변화)

  • 류시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

Broadband Interference Patterns in Shallow Water with Constant Bottom Slope (해저면 경사가 일정한 천해에서의 광대역 간섭 유형)

  • 오철민;오선택;나정열;이성욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2002
  • Broadband interference patterns are studied using ship as an acoustic source in shallow waters with varying bathymetry. Waveguide invariant index (β) indicating the pattern of constructive (or destructive) interference in range-frequency domain is derived in a waveguide with constant bottom slope based on adiabatic mode theory. Using this invariant, changes of the interference patterns resulting from the variation of bottom bathymetry are analyzed. Results of the analytic interpretation is compared with those from sea experiments and numerical simulations.

Oceanic Skin-Bulk Temperature Difference through the Comparison of Satellite-Observed Sea Surface Temperature and In-Situ Measurements (인공위성관측 해수면온도와 현장관측 수온의 비교를 통해 본 해양 피층-표층 수온의 차이)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.273-287
    • /
    • 2008
  • Characteristics of skin-bulk sea surface temperature (SST) differences in the Northeast Asia seas were analyzed by utilizing 845 collocated matchup data between NOAA/AVHRR data and oceanic in-situ temperature measurements for selected months from 1994 to 2003. In order to understand diurnal variation of SST within a few meters of the upper ocean, the matchup database were classified into four categories according to day-night and drifter-shipboard measurements. Temperature measurements from daytime drifters showed a good agreement with satellite MCSST (Multi-Channel Sea Surface Temperature) with an RMS error of about $0.56^{\circ}C$. Poor accuracy of SST with an rrns error of $1.12^{\circ}C$ was found in the case of daytime shipboard CTD (Conductivity, Temperature, Depth) measurements. SST differences between MCSST and in-situ measurements are caused by various errors coming from atmospheric moist effect, coastal effect, and others. Most of the remarkable errors were resulted from the diurnal variation of vertical temperature structure within a few meters as well as in-situ oceanic temperatures at different depth, about 20 cm for a satellite-tracked drifting buoy and a few meters for shipboard CTD or moored buoy. This study suggests that satellite-derived SST shows significant errors of about ${\pm}3^{\circ}C$ in some cases and therefore it should be carefully used for one's purpose on the base of in-depth understanding of skin-bulk SST difference and vertical temperature structure in regional sea.

Effect of Applied Voltage on the Reliability of Coating Flaw Detection of Pipe with Different Buried Depths

  • Lim, B.T.;Kim, M.G.;Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.277-284
    • /
    • 2019
  • External corrosion control of buried pipe can be achieved by the combination of barrier coating and cathodic protection. Coating damage and deterioration can be induced by many reasons; damage during handling and laying, enhanced failure at low temperatures, failure during commissioning and operation, disbanding due to inadequate surface cleaning, rock penetration during installation and service etc. This work focused on the effect of survey conditions on the reliability of coating flaw detection of buried pipes. The effects of applied voltage and anode location on the detection reliability of coating flaw of buried pipe in soil with the resistivity of ca. 25.8 kΩ·cm were discussed. Higher applied voltage increased the detection reliability, regardless of buried depth, but deeper burial depth reduced the reliability. The location of the anode has influenced on the detection reliability. This behaviour may be induced by the variation of current distribution by the applied voltage and buried depth. From the relationship between the applied voltage and reliability, the needed detection potential to get a desire detection reliability can be calculated to get 100% detection reliability using the derived equation.

Wettability Simulation of Oil Droplet on Riblet Surface (리블렛 표면에서 유적의 젖음성에 대한 수치 해석)

  • Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.94-98
    • /
    • 2019
  • The riblet structure like shark skin has been widely studied owing to its drag reduction and anti-fouling properties. In this study we simulated the wettability of an oil droplet on a riblet surface. We developed a numerical analysis method using the Wenzel equation and Cassie-Baxter equation that can estimate the contact angle with a penetrated depth of the droplet on rough surfaces. Riblet surfaces with nine scales composed of five hemi-elliptical ribs are generated numerically. The variation of contact angles with fractional depth of penetration for the generated riblet surfaces with and without coatings is demonstrated in the condition of solid-air-oil and solid-water-oil interfaces. The contact angle for the uncoated surface decreases with increasing fractional depth of penetration more drastically than that for the coated surface. For the effect of surface roughness on the contact angle of the droplet, the oleophilic surface gives lower contact angle when the surface is rougher, whereas the oleoophobic surface gives higher contact angle with higher roughness To verify the analysis results, the wetting angle was measured in the solid-air-oil interface and solid-water-oil interface for the shark-skin template and shark-skin replica. The effects of teflon coating were also evaluated. It is shown that the simulation results cover the experimental ones.

Shear Wave Velocity in Unconsolidated Marine Sediments of the Western Continental Margin, the East Sea

  • Kim, Gil-Young;Kim, Dae-Choul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.167-175
    • /
    • 2003
  • Shear wave velocity was measured and grain size analysis was conducted on two core samples obtained in unconsolidated marine sediments of the western continental margin, the East Sea. A pulse transmission technique based on the Hamilton frame was used to measure shear wave velocity. Duomorph ceramic bender transducer-receiver elements were used to generate and detect shear waves in sediment samples. Time delay was calculated by changing the sample length from the transducer-receiver element. Time delay is 43.18 μs and shear wave velocity (22.49 m/s) is calculated from the slope of regression line. Shear wave velocities of station 1 and 2 range from 8.9 to 19.0 m/s and from 8.8 to 22 mis, respectively. Shear wave velocities with depth in both cores are qualitatively in agreement with the compared model〔1〕, although the absolute value is different. The sediment type of two core samples is mud (mean grain size, 8-9Φ). Shear wave velocity generally increases with sediment depth, which is suggesting normally consolidated sediments. The complicated variation of velocity anisotropy with depth at station 2 is probably responsible for sediment disturbance by possible gas effect.

Effect of Geometry Variation on Plastic Collapse of Marine Pipeline (해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과)

  • Baek, Jong-Hyun;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • The marine pipelines laid in deep waters were evaluated to verify the resistance on the plastic collapse to heavy ambient external pressure due to hydrostatic pressure. In this study, the plastic collapse behavior of the marine pipe subjected to hydrostatic pressure was evaluated with the ovality and ratio of diameter to thickness in FE analyses. A parametric study was shown that the internal pressure increased the plastic collapse depth by increasing of the resistance to the plastic collapse. It was also shown that the collapse depth of the pipeline having a local ovality was deeper than that of the pipeline having a global ovality. Finally, the plastic collapse depth decreased when either the ratio of diameter to thickness or the ovality increased.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Characteristics of Scour around Pipeline in Current (흐름에 의한 관로의 세굴특성)

  • Kim, Sungduk;Ahn, Kwangkuk;Lee, Hojin;Lee, Seongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.117-123
    • /
    • 2009
  • This study is to investigate the characteristics of scour around pipeline in current and hydraulic model tests were performed. All the model test are 45 cases, which were conducted with velocities of 0.2 m/s to 0.5 m/s and pipe diameters of 45, 60, 90 mm. The developments of scour around pipeline were observed and equilibrium scour depths were recorded due to variation of pipe diameter and current velocity. According to the results, the equilibrium scour depth was proportional to current velocity and pipe diameter. The effect of diameter of pipeline on the equilibrium scour depth was bigger than current velocity. The correlations of relative scour depth and dimensionless number such as a Reynolds number, Shields number, and Froude number were analyzed. The Froude number and the relative scour depth had a high correlation of 0.900.

  • PDF