• Title/Summary/Keyword: Effect Measurement

검색결과 6,965건 처리시간 0.034초

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.

공진 자이로의 재평형 모드 구현과 각속도 측정 실험 (Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests)

  • 진재현;김동국
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.

MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석 (Wind tunnel effect analysis for MEXICO wind turbine model)

  • 신형기;임종수;장문석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

A New Method for Measuring Refractive Index with a Laser Frequency-shifted Feedback Confocal Microscope

  • Zhou, Borui;Wang, Zihan;Shen, Xueju
    • Current Optics and Photonics
    • /
    • 제4권1호
    • /
    • pp.44-49
    • /
    • 2020
  • In this paper, a new method is presented to measure the refractive index of single plain glass or multilayered materials, based on a laser frequency-shifted confocal feedback microscope. Combining the laser frequency-shifted feedback technique and the confocal effect, the method can attain high axial-positioning accuracy, stability and sensitivity. Measurements of different samples are given, including N-BK7 glass, Silica plain glass, and a microfluidic chip with four layers. The results for N-BK7 glass and Silica plain glass show that the measurement uncertainty in the refractive index is better than 0.001. Meanwhile, the feasibility of this method for multilayered materials is tested. Compared to conventional methods, this system is more compact and has less difficulty in sample processing, and thus is promising for applications in the area of refractive-index measurement.

기계적 후면 손상이 레이저/극초단파 광전도 기법에 의한 소수 반송자 재결합 수명 측정에 미치는 영향 (Effect of mechanical backside damage upon minority carrier recombination lifetime measurement by laser/microwave photoconductance technique)

  • 조상희;최치영;조기현
    • 한국결정성장학회지
    • /
    • 제5권4호
    • /
    • pp.408-413
    • /
    • 1995
  • 초크랄스키 실리콘 기판의 뒷면에 형성된 기계적 손상이 레이저 여기/극초단파 반사 광전도 감쇠법에 의한 소수반송자 재결합 수명 측정에 미치는 영향을 고찰하였다. 기계적손상의 정도는 X-선 이중결정 회절법과 X-선 단면 측정법 및 습식산화/선택적 식각 방법으로 평가하였다. 그 결과, 웨이퍼 뒷면에 가해지는 기계적 손상의 세기가 강할수록 소수반송자 재결합 수명은 짧아지고, 소수반송자 재결합 수명 측정에 영향을 미치는 반치전폭의 임계값은 약13초임을 알 수 있다.

  • PDF

Imperfection Parameter Observer and Drift Compensation Controller Design of Hemispherical Resonator Gyros

  • Pi, Jaehwan;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.379-386
    • /
    • 2013
  • The hemispherical resonator gyroscope is a type of vibratory gyroscope, which can measure angle or angular rate, based on its operating mode. This paper deals with the case when the hemispherical resonator gyroscope is operated in angle measurement mode. In angle measurement mode, the resonator pattern angle precesses, with respect to the external rotation input, by the principle of the Coriolis effect, so that the external rotation can be estimated, by measuring the amount of precession angle. However, this pattern angle drifts, due to the manufacturing error of the resonator. Since the drift effect causes degradation of the angle estimation performance of the resonator, the corresponding drift compensation control should be performed, to enhance the estimation performance. In this paper, a mathematical model of the hemispherical resonator gyro is first introduced. By using the mathematical model, a nonlinear observer for imperfection parameter estimation, and the corresponding compensation controller are designed to operate hemispherical resonator gyros, as angle measurement sensors.

Establishment of strain measurement system for evaluation of strain effect in HTS tapes under magnetic field

  • Dedicatoria, Marlon J.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권4호
    • /
    • pp.14-17
    • /
    • 2011
  • The evaluation of the electromechanical properties of HTS CC tapes is one of the foremost procedures to be done to ensure the applicability of superconducting wires to electric devices. A precise measurement of the stress and strain is important in deriving the mechanical properties under operating environment. Up to now, there is no standard test method yet for the electromechanical property evaluation of HTS tapes under self field and external magnetic field although there are already reports on the different devices used to evaluate these properties. Strain can be measured by adopting a strain gauge or a high resolution double extensometer. In this study, strain effect on $I_c$ in HTS CC tapes under magnetic fields was evaluated. Comparison of advantages and setback of strain measuring devices were discussed. In addition, a dual strain measurement system using both the SG and extensometer may be practical to lessen the burden in case one of the measuring devices does not work well.

PCB 선로의 ESD 영향 및 측정법에 관한 연구 (A Study on the ESD Effect and Measurement for PCB)

  • 이관훈;황순미;송병석
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권3호
    • /
    • pp.245-249
    • /
    • 2011
  • Through the test of ESD(Electro Static Discharge) for PCB circuit, we are able to research on the ESD effect. This paper also studys on the ESD test method for measurement. In the measurement of the discharge current, we used current probe(TC-1). The applied voltage to the PCB metal is -3 kV HBM mode. In conclusion ESD influences exponentially greater impact in nearer PCB circuit.

Stereoscopic PTV 기법의 개발과 성능비교 연구 (Development of Stereoscopic PTV Technique and Performance Tests)

  • 이상준;윤전환
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

다축 시험대의 상호 간섭 최소화 설계기법 (Design Technique for Minimizing the Crosstalk Effect in Multiaxis Thrust Measurement Stand)

  • 김중근;윤일선
    • 한국추진공학회지
    • /
    • 제11권3호
    • /
    • pp.13-19
    • /
    • 2007
  • 본 논문에서는 추진기관의 추력방향 성능 평가에 적용되는 다축시험대의 상호 간섭 최소화 설계 방안에 대해서 논하였다. 다축시험대의 변형 모델링으로 상호 간섭 크기를 이론적으로 예측하고 설계변수가 상호 간섭 크기에 미치는 영향을 평가하였다. 본 논문의 결과로부터 다축시험대 설치에 따른 정렬오차, 힘에 의한 시험대의 변형이 상호 간섭에 가장 큰 영향을 미치며 로드셀과 플렉셔의 물성 및 기하학적 형상에도 영향을 받는 것으로 분석되었다.