피라미드 그래프는 병렬처리 분야에서 정방형 메쉬와 트리 구조를 기반으로 하는 상호연결망 위상으로 잘 알려져 있다. 개선된 피라미드 그래프는 이러한 피라미드 그래프보다 성능을 향상시키기 위해 메쉬를 토러스로 대체시킨 구조를 말한다. 본 논문에서는 개선된 피라미드 그래프의 각 계층을 형성하고 있는 기반 부-그래프로서의 정방형 토러스 그래프의 간선들을 두 개의 서로 다른 그룹으로 분류하는 전략을 채택한다. 토러스 그래프 내의 간선 집합은 해당 간선의 양 끝 정점들에 인접된 부모 정점들이 상위 계층에서 서로 인접하는지 아니면 공유하는 관계 인지에 따라 각각 NPC-간선과 SPC-간선이라 불리는 두 개의 서로 다른 부분집합으로 나누어 고려한다. 아울러 원래 그래프에서의 SPC-간선들을 압축된 결과 그래프에서는 압축된 슈퍼-정점 내부로 은닉시킴으로써 NPC-간선들에 대해서만 초점을 맞추도록 하기 위해 압축 그래프의 개념을 소개한다. 본 연구에서는 $2^n{\times}2^n$ 2-차원 정방형 토러스 내에서 헤밀톤 사이클 구성 시 포함할 수 있는 NPC-간선 개수의 하한 및 상한이 각각 $2^{2n-2}$와 $3{\cdot}2^{2n-2}$임을 분석한다. 이 결과를 개선된 피라미드 그래프로 확장시킴으로써 개선된 n-차원 피라미드 그래프 내에서 헤밀톤 사이클에 포함할 수 있는 NPC-간선의 최대 개수는 $4^{n-1}$-2n+1 개임을 증명한다.
본 논문에서는 얼굴 표정인식을 위한 새로운 지역 미세 패턴 기술 방법인 Signed Local Directional Pattern(SLDP)을 제안한다. SLDP는 얼굴 영상의 텍스쳐 정보를 표현하기 위해 에지 정보를 이용한다. 이는 기존의 방법들에 비해 뛰어난 구별 성능과 효율적인 코드 생성을 가능하게 한다. SLDP는 마스크 범위 이웃 화소들을 이용하여 에지 반응 값을 계산하고 이들 중 부호를 고려하여 에지 반응 값이 큰 에지 방향 정보를 가지고 만들어진다. 이는 기존 LDP에서 구별하지 못하던 비슷한 에지구조에 밝기 값이 반대인 지역 패턴을 구별할 수 있다. 본 논문에서는 얼굴 표정인식을 위해 얼굴 영상을 여러 영역으로 분할하고 각 영역으로부터 SLDP코드의 분포를 계산한다. 각 분포는 얼굴의 지역적인 특징을 나타내고 이들 특징을 연결해서 얼굴 전체를 나타내는 얼굴 특징 벡터를 생성한다. 본 논문에서는 생성된 얼굴 특징 벡터와 SVM(Support Vector Machine)을 이용해서 Cohn-Kanade 데이터베이스와 JAFFE데이터베이스에서 얼굴 표정인식을 수행했다. SLDP는 표정인식에서 기존 방법들보다 뛰어난 결과를 보여주었다.
그래프 표현 학습을 위한 노드 임베딩 기법은 그래프 마이닝에서 양질의 결과를 얻는 데 중요한 역할을 한다. 지금까지 대표적인 노드 임베딩 기법은 동종 그래프를 대상으로 연구되었기에, 간선 별로 고유한 의미를 갖는 지식 그래프를 학습하는 데 어려움이 있었다. 이러한 문제를 해결하고자, 기존 Triple2Vec 기법은 지식 그래프의 노드 쌍과 간선을 하나의 노드로 갖는 트리플 그래프를 학습하여 임베딩 모델을 구축한다. 하지만 Triple2Vec 임베딩 모델은 트리플 노드 간 관련성을 단순한 척도로 산정하기 때문에 성능을 높이는데 한계를 가진다. 이에 본 논문은 Triple2Vec 임베딩 모델을 개선하기 위한 그래프 합성곱 신경망 기반의 특징 추출 기법을 제안한다. 제안 기법은 트리플 그래프의 인접성 벡터(Neighborliness Vector)를 추출하여 트리플 그래프에 대해 노드 별로 이웃한 노드 간 관계성을 학습한다. 본 논문은 DBLP, DBpedia, IMDB 데이터셋을 활용한 카테고리 분류 실험을 통해, 제안 기법을 적용한 임베딩 모델이 기존 Triple2Vec 모델보다 우수함을 입증한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3312-3327
/
2020
Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.
The aim of this study was to develop a marbling classification and prediction model using small parts of sirloin images based on a deep learning algorithm, namely, a convolutional neural network (CNN). Samples were purchased from a commercial slaughterhouse in Korea, images for each grade were acquired, and the total images (n = 500) were assigned according to their grade number: 1++, 1+, 1, and both 2 & 3. The image acquisition system consists of a DSLR camera with a polarization filter to remove diffusive reflectance and two light sources (55 W). To correct the distorted original images, a radial correction algorithm was implemented. Color images of sirloins of Hanwoo (mixed with feeder cattle, steer, and calf) were divided and sub-images with image sizes of 161 × 161 were made to train the marbling prediction model. In this study, the convolutional neural network (CNN) has four convolution layers and yields prediction results in accordance with marbling grades (1++, 1+, 1, and 2&3). Every single layer uses a rectified linear unit (ReLU) function as an activation function and max-pooling is used for extracting the edge between fat and muscle and reducing the variance of the data. Prediction accuracy was measured using an accuracy and kappa coefficient from a confusion matrix. We summed the prediction of sub-images and determined the total average prediction accuracy. Training accuracy was 100% and the test accuracy was 86%, indicating comparably good performance using the CNN. This study provides classification potential for predicting the marbling grade using color images and a convolutional neural network algorithm.
사람이 느끼는 피로는 다양한 생체신호로부터 측정이 가능한 것으로 알려져 있으며, 기존 연구는 질병과 관련된 심각한 피로수준을 산정하는데 주된 목적을 두고 있다. 본 연구에서는 피실험자의 영상을 이용하여 딥러닝 기반의 영상 분석 기술을 적용, 피로 여부를 판단하기 위한 모델을 제안한다. 특히 화상 분석에서 통상적으로 사용되는 객체 인식, 요소 추출과 함께 영상 데이터의 시계열적 특성을 고려하여 방법론을 교차한 3개 분석모델을 제시했다. 다양한 피로상황에서 수집된 정면 얼굴 영상 데이터를 이용하여 제시된 모델을 실험하였으며, CNN 모델의 경우 0.67의 정확도로 피로 상태를 분류할 수 있어 영상 분석 기반의 피로 상태 분류가 유의미하다고 판단된다. 또한 모델별 학습 및 검증 절차 분석을 통해 영상 데이터 특성에 따른 모델 적용방안을 제시했다.
본 논문에서는 블록분류를 통하여 얻어진 블록별 특성에 따라 블록간 보간법과 신호적응필터를 이용한 새로운 후처리 기법을 제안한다. 제안한 알고리듬에서는 모든 블록에 대해서 DCT 계수의 특성에 따라서 저주파와 고주파 블록으로 나눈다. 이웃한 네 개의 저주파 블록에 대해서는 보간법을 이용하여 블록화 현상을 제거하고, 링잉현상이 발생할 가능성이 있는 고주파 블록에서는 에지맵에 따라 신호적응필터를 적용하여 영상의 에지들은 보호하면서 에지주위에 나타나는 링잉현상을 제거한다. 모의실험 결과 제안한 방법이 기존방법에 비하여 객관적 및 주관적 화질 측면에서도 우수한 성능을 보임을 확인하였다.
The goal of Medical multimedia server is to develop computer hardware and software which would enable electronic access, storage, transmission, and display of patient data and images. Since the current network only provides so called "best-effort" services, it is impossible to satisfy QoS guarantee that is required for real time application services for emergency room, operating room etc. Accordingly, world-wide research is being made for a variety of services to provide QoS. he goal of DiffServ is to offer scalable differentiated service in Internet which are made possible by traffic classification and conditioning only performed at an edge(or a boundary) node. In case DiffServ was deployed in the Medical multimedia network, it is difficult to estimate how the QoS mechanism would affect totally the network performance. Therefore, we need to verify by simulation the design of algorithm which provide a variety of differentiated services. In QoS for Medical multimedia network, a simulator is designed and implemented using OPNET to investigate the performance of DiffServ QoS support mechanism. The developed DiffServ simulator may generate packets according to random, and bursty traffic models in order to incorporate diverse traffic conditions in the Medical multimedia network environment. Based on our simulation results, we confirmed that service differentiation is possible by using the EF(Expedited Forwarding) class in DiffServ networks.
본 논문에서는 공장 자동화 시스템의 한 예로, 컨베이어 벨트로 흘러 들어오는 생산품을 모델별로 자동 인식하기 위한 방법을 제안하고 있다. 일반적으로 NTSC 방식의 카메라를 사용할 경우 움직이는 물체는 카메라 고유의 잔상이 발생하게 된다. 잔상이 존재하는 영상을 이용하여 효율적인 처리가 불가능하므로 적당한 후처리 방법이 요구된다. 이를 위하여 제안하는 인터레이스 제거 기법을 통하여 잔상을 제거하고, 이진화를 통하여 대략적 물체 영역을 판별한 후 물체를 에워싸는 직사각형 영역을 구한다. 그 후 윤곽선 검출을 거쳐 직사각형 영역을 블록별로 세분화한 후 각 블록별 화소수를 계산하여 평균을 중심으로 재분류한 후 모델 코드를 생성하여 모델 분류를 하였다. 실험결과 본 논문에서 제안하는 방법의 경우 기존의 방법보다 높은 분류 성공률을 나타내었다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다. 영상 분류를 위해 객체의 특징에 기반을 두고 네 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심 영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다. 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 세 번째 기준은 중심 객체의 평균 경계강도이다. 세 번째 기준은 분류 기준들중에서 가장 우수한 분류 성능을 나타내지만 특징값을 추출하기 위해서는 중심 객체를 추출해야 되는 많은 연산을 내포하고 있다. 이에 이와 비슷한 특성을 나타내는 네 번째 기준으로 영상 중심 영역에서의 평균 경계강도를 선택하였다. 네 번째 분류 기준은 세 번째 분류 기준에 비해 분류 성능은 조금 낮지만 빠르게 특징값을 추출할 수 있어 많은 데이터를 빠른 시간 내에 처리해야 되는 대규모 영상 데이터 베이스에 적용가능하다. 영상을 분류하기 위해 신경회로망 및 SVM을 사용하여 이들 기준들을 통합하였으며 신경회로망 및 SVM의 분류 성능을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.