• 제목/요약/키워드: Edge-based Classification

검색결과 142건 처리시간 0.024초

컨볼루션 신경망 기반 표정인식 스마트 미러 (Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network)

  • 최성환;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.200-203
    • /
    • 2021
  • 본 논문은 여러 인공지능 기술 중 이미지 분류를 통한 사람의 얼굴 표정을 인식하는 프로그램을 통해 사람의 표정을 인식하여 거울에 나타내는 스마트미러 기술을 소개한다. 여러 사람의 5가지 표정이미지를 통하여 인공지능으로 학습하였고, 사람이 거울을 볼 때 거울이 그 표정을 인식하여 인식한 결과를 거울에 나타내는 방식이다. 여러 사람의 얼굴을 표정별로 구분되어있는 dataset을 kaggle에서 제공하는 fer2013을 이용하여 사용하였고, 이미지 데이터 분류를 위해 네트워크 구조는 컨볼루션 신경망 구조를 이용하여 학습하였다. 최종적으로 학습된 모델을 임베디드 보드인 라즈베리파이4를 통해서 얼굴을 인식하여 거울을 통해 디스플레이에 나타내는 구조이다.

  • PDF

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

자율 주차 시스템을 위한 실시간 차량 추출 알고리즘 (A Real-time Vehicle Localization Algorithm for Autonomous Parking System)

  • 한종우;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘 (A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts)

  • 유두식;송기선;강문기
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.205-215
    • /
    • 2013
  • 디지털 이미징 장치는 일반적으로 베이어 패턴(Bayer pattern)을 사용하며, 영상 획득 과정에서 광학적 블러(blur)에 의해 영상의 품질이 손상된다. 블러된 베이어 영상에서 고해상도 컬러 영상을 얻기 위하여, 일반적으로 컬러 보간 방법과 디블러링 방법을 독립적으로 수행한다. 하지만, 베이어 샘플링에 의한 에지 정보가 불충분하여 에지를 가로지르는 방향으로 보간 하게 되고, 이에 따라 컬러 보간 과정에서 에러가 발생한다. 이러한 에러는 디블러링 과정에서 강조되어 영상의 품질을 하락시킨다. 따라서 본 논문은 컬러 보간 방법과 결합된 디블러링 알고리즘을 제안한다. 제안하는 방법은 크게 보간 단계와 영역 결정 단계로 나눌 수 있다. 보간 단계에서는 가정된 에지 방향에 따라 보간 및 디블러링 과정을 수행하고, 영역 결정 단계에서는 각 화소 위치에서 국부 영역의 특성을 추정하고, 보간 단계에서 구한 값을 영역 적응적으로 융합한다. 또한 본 논문에서는 디블러링 성능을 향상시키기 위하여 광학적 블러와 유사한 파동 광학에 근거한 블러 모델을 기반으로 하고, 추정한 국부 영역 특성을 반영하여 디블러링 필터를 추정한다. 실험 결과를 통해 제안하는 방법이 컬러 보간 에러가 확대되는 것을 방지함을 확인할 수 있으며, 기존 방법에 비해 수치적인 면과 시각적인 면에서 뛰어난 결과를 보임을 확인 할 수 있다.

영상을 기반 교통 파라미터 추출에 관한 연구 (An Approach to Video Based Traffic Parameter Extraction)

  • 욱매;김용득
    • 전자공학회논문지SC
    • /
    • 제38권5호
    • /
    • pp.42-51
    • /
    • 2001
  • 차량검출은 교통량 관측을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보 추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나, 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동중인 차량에 의해서 발생하는 활성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98[%]이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차선의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

영상기반 교통정보 추출 알고리즘에 관한 연구 (A Study On the Image Based Traffic Information Extraction Algorithm)

  • 하동문;이종민;김용득
    • 대한교통학회지
    • /
    • 제19권6호
    • /
    • pp.161-170
    • /
    • 2001
  • 차량검출은 교통량 관측(모니터링)을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동 중인 차량에 의해서 발생하는 환성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98(%)이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발 (Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device)

  • 백희승;신종호;김성준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권1호
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

에지 적응 1-비트 DPCM 영상부호화 (An Edge Adaptive 1-Bit DPCM Image Coding)

  • 심영석;남상욱
    • 대한전자공학회논문지
    • /
    • 제25권7호
    • /
    • pp.819-825
    • /
    • 1988
  • An 1-bit DPCM image coding method is presented. Our method is specially designed to reduce the slope overload which seems to be the major performance degradation factor in 1-bit DPCM. In the present algorithm, based on the classification of neighborhoods by its flatness, slope strength and direction, predictor and quantizer operate adaptively through switching action. Compared with some other methods by computer simulation, proposed method shows improved performance in image quality as well as in signal to noise ratio. This gain mainly comes from the reduced slope overload and seems large to compensate the increased complexity in prediction. As a post processing, Lee filter is used to reduce the granular noise subjectively annoying in flat region.

  • PDF

새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식 (Model based Facial Expression Recognition using New Feature Space)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.309-316
    • /
    • 2010
  • 본 연구에서는 얼굴 그리드 각도를 특징공간으로 하는 새로운 모델 기반 얼굴 표정 인식 방법을 제안한다. 제안 방식은 6가지 얼굴 대표 표정을 인식하기 위해 표정 그리드를 이용하여 그리드의 각 간선과 정점이 형성하는 각도를 기반으로 얼굴 특징 공간을 구성한다. 이 방법은 다른 표정 인식 알고리즘의 정확도를 낮추는 원인인 변환, 회전, 크기변화와 같은 어파인 변환에 강건한 특징을 보인다. 또한, 본 연구에서는 각도로 특징공간을 구성하고 이 공간 내에서 Wrapper 방식으로 특징 부분집합을 선택하는 과정을 설명한다. 선택한 특징들은 SVM, 3-NN 분류기를 이용해 분류하고 분류 결과는 2중 교차검증을 통해 검증하도록 한다. 본 연구가 제안한 방법에서는 94%의 표정 인식 결과를 보였으며 특히 특징 부분집합 선택 알고리즘을 적용한 결과 전체 특징을 이용한 경우보다 약 10%의 인식율 개선 효과를 보인다.