• Title/Summary/Keyword: Edge-based Classification

Search Result 142, Processing Time 0.024 seconds

Edge-Preserving Image Restoration Using Block-Based Edge Classification (블록기반의 윤곽선 분류를 이용한 윤곽선 보존 영상복원 기법)

  • 이상광;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • Most image restoration problems are ill-posed and need to e regularized. A difficult task in image regularization is to avoid smoothing of image edges. In this paper, were proposed an edge-preserving image restoration algorithm using block-based edge classification. In order to exploit the local image characteristics, we classify image blocks into edge and no-edge blocks. We then apply an adaptive constrained least squares (CLS) algorithm to eliminate noise around the edges. Experimental results demonstrate that the proposed algorithm can preserve image edges during the regularization process.

  • PDF

3D Mesh Simplification Using Subdivided Edge Classification (세분화된 에지 분류 방법을 이용한 삼차원 메쉬 단순화)

  • 장은영;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.109-112
    • /
    • 2000
  • Many applications in computer graphics require highly detailed complex models. However, the level of detail may vary considerably according to applications. It is often desirable to use approximations in place of excessively detailed models. We have developed a surface simplification algorithm which uses iterative contractions of edges to simplify models and maintains surface error approximations using a quadric metric. In this paper, we present an improved quadric error metric for simplifying meshes. The new metric, based on subdivided edge classification, results in more accurate simplified meshes. We show that a subdivided edge classification captures discontinuities efficiently. The new scheme is demonstrated on a variety of meshes.

  • PDF

Edge-Preserving Algorithm for Block Artifact Reduction and Its Pipelined Architecture

  • Vinh, Truong Quang;Kim, Young-Chul
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.380-389
    • /
    • 2010
  • This paper presents a new edge-protection algorithm and its very large scale integration (VLSI) architecture for block artifact reduction. Unlike previous approaches using block classification, our algorithm utilizes pixel classification to categorize each pixel into one of two classes, namely smooth region and edge region, which are described by the edge-protection maps. Based on these maps, a two-step adaptive filter which includes offset filtering and edge-preserving filtering is used to remove block artifacts. A pipelined VLSI architecture of the proposed deblocking algorithm for HD video processing is also presented in this paper. A memory-reduced architecture for a block buffer is used to optimize memory usage. The architecture of the proposed deblocking filter is verified on FPGA Cyclone II and implemented using the ANAM 0.25 ${\mu}m$ CMOS cell library. Our experimental results show that our proposed algorithm effectively reduces block artifacts while preserving the details. The PSNR performance of our algorithm using pixel classification is better than that of previous algorithms using block classification.

A Study on Game Character Classification Based on Texture and Edge Orientation Feature (질감 및 에지 방향 특징에 기반한 게임 캐릭터 분류에 관한 연구)

  • Park, Chang-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1318-1324
    • /
    • 2012
  • This paper proposes a novel method for Game character classification based on texture and edge orientation feature. The character dose not move(NPC) and move the character is classified. Classification of property within the character of straight line segments are used to extract features. First, the character inside edge feature extraction and then calculates EEDH, SSPD. The extracted attribute represents the energy of a particular direction. Thus, these properties were used to classify of NPC and Monster. The proposed method, the user can reduce the unnecessary time in the game.

An Edge Detection Method by Using Fuzzy 2-Mean Classification and Template Matching

  • Kang, C.C.;Lee, P.J.;Wang, W.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1315-1318
    • /
    • 2004
  • Based on fuzzy 2-mean classification and template matching method, we propose a new algorithm to detect the edges of an image. In the algorithm, fuzzy 2-mean classification can classify all pixels in the mask into two clusters whatever the mask in the dark or light region; and template matching not only determines the edge's direction, but also thins the detected edge by a set of inference rules and, by the way, reduces the impulse noises.

  • PDF

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

A Study on the Identification of Cutting-Edge ICT-Based Converging Technologies

  • Kim, Pang Ryong;Hwang, Sung Hyun
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.602-612
    • /
    • 2012
  • It is becoming increasingly difficult to identify promising technologies due to the influx of new technologies and the high level of complexity involved in many of these technologies. Identifying promising information and communications technology (ICT)-based converging technologies holds the key to finding new sources of economic growth and forward momentum. The goal of this study is to identify cutting-edge ICT-based converging technologies by examining the latest trends in the US patent market. Analyzing the US patent market, the most competitive of such markets in the world, can yield certain clues about which of the ICT-based converging technologies may be the next revolutionary technologies. For a classification of these technologies, this study follows the International Patent Classification system. As for ICT, there are 58 related fields at the subclass level and 831 fields at the main-group level. For emerging and converging technologies, there are 75 at the main-group level. From these technologies, a final selection for cutting-edge ICT-based converging technologies is made using a composite index reflecting the converging coefficient, emerging coefficient, and technology impact index.

Automatic Edge Class Formulation for Classified Vector Quantization

  • Jung, jae-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.57-61
    • /
    • 1999
  • In the field of image compression, Classified Vector Quantization(CVQ) reveals attractive characteristics for preserving perceptual features, such as edges. However, the classification scheme is not generalized to effectively reconstruct different kinds of edge patterns in the original CVQ that predefines several linear-type edge classes: vortical edge horizontal edge diagonal edge classes. In this paper, we propose a new classification scheme, especially for edge blocks based on the similarity measure for edge patterns. An edge block is transformed to a feature vector that describes the detailed shape of the edge pattern The classes for edges are formulated automatically from the training images to result in the generalization of various shapes of edge patterns. The experimental results show the generated linear/nonlinear types of edge classes. The integrity of all the edges is faithfully preserved in the reconstructed image based on the various type of edge codebooks generated at 0.6875bpp.

  • PDF

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

An Edge Directed Color Demosaicing Algorithm Considering Color Channel Correlation (컬러 채널 상관관계를 고려한 에지 방향성 컬러 디모자이킹 알고리즘)

  • Yoo, Du Sic;Lee, Min Seok;Kang, Moon Gi
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.619-630
    • /
    • 2013
  • In this paper, we propose an edge directed color demosaicing algorithm considering color channel correlation. The proposed method consists of local region classification step and edge directional interpolation step. In the first step, each region of a given Bayer image is classified as normal edge, pattern edge, and flat regions by using intra channel and inter channel gradients. Especially, two criteria and verification process for the normal edge and pattern edge classification are used to reduce edge direction estimation error, respectively. In the second step, edge directional interpolation process is performed according to characteristics of the classified regions. For horizontal and vertical directional interpolations, missing color components are obtained from interpolation equations based on intra channel and inter channel correlations in order to improve the performance of the directional interpolations. The simulation results show that the proposed algorithm outperforms conventional approaches in both objective and subjective terms.