• Title/Summary/Keyword: Edge intelligence

Search Result 169, Processing Time 0.028 seconds

Humidity Sensor Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 습도 센서)

  • Junho Yeo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, a humidity sensor using a microstrip patch antenna(MPA) and polyvinyl alcohol(PVA) is studied. PVA is a polymer material whose permittivity changes with humidity, and a rectangular slot is added to the radiating edge of the MPA, which is sensitive to changes in electric field, in order to increase the sensitivity to changes in relative permittivity. After thinly coating the area around the radiating edge with the rectangular slot of the MPA fabricated on a 0.76 mm-thick RF-35 substrate with PVA, the changes in the resonant frequency and magnitude of the MPA's input reflection coefficient are measured when relative humidity is adjusted from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature and humidity chamber. Experiment results show that when the relative humidity increases from 40% to 80%, the resonance frequency of the antenna' input reflection coefficient decreases from 2.447 GHz to 2.418 GHz, whereas the magnitude increases from -7.112 dB to -3.428 dB.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Efficient AIOT Information Link Processing in Cloud Edge Environment Using Blockchain-Based Time Series Information (블록체인 기반의 시계열 정보를 이용한 클라우드 엣지 환경의 효율적인 AIoT 정보 연계 처리 기법)

  • Jeong, Yoon-Su
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • With the recent development of 5G and artificial intelligence technologies, it is interested in AIOT technology to collect, process, and analyze information in cloud edge environments. AIIoT technology is being applied to various smart environments, but research is needed to perform fast response processing through accurate analysis of collected information. In this paper, we propose a technique to minimize bandwidth and processing time by blocking the connection processing between AIOT information through fast processing and accurate analysis/forecasting of information collected in the smart environment. The proposed technique generates seeds for data indexes on AIOT devices by multipointing information collected by blockchain, and blocks them along with collection information to deliver them to the data center. At this time, we deploy Deep Neural Network (DNN) models between cloud and AIOT devices to reduce network overhead. Furthermore, server/data centers have improved the accuracy of inaccurate AIIoT information through the analysis and predicted results delivered to minimize latency. Furthermore, the proposed technique minimizes data latency by allowing it to be partitioned into a layered multilayer network because it groups it into blockchain by applying weights to AIOT information.

Recent Developments in Imaging Systems and Processings-3 Dimensional Computerized Tomography (영상 System의 처리의 근황-전산화 3차원 단층 영상처리)

  • 조장희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.8-22
    • /
    • 1978
  • Recently developed Computed Topography (CT) reconstruction algorithms are reviewed in a more generalized sense and a few reconstruction examples are given for illustration. The construction of an image function from the physically measured projections of some object is Discussed with reference to the least squares optimum filters, originally derived to enhance the signal-to-noise ratio in communications theory. The computerifed image processing associated with topography is generalized so as to include 3 distinct parts: the construction of an image from the projection, the restoration of a blurred, noisy image, degraded by a known space-invariant impulse response, and the further enhancement of the image, e.g. by edge sharpening. In conjunction with given versions of the popular convolution algorithm, n6t 19 be confused with filtering by a 2-diminsional convolution, we consider the conditions under which a concurrent construction, restoration, and enhancement are possible. Extensive bibliographical limits are given in the references.

  • PDF

Locating Text in Web Images Using Image Based Approaches (웹 이미지로부터 이미지기반 문자추출)

  • Chin, Seongah;Choo, Moonwon
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2002
  • A locating text technique capable of locating and extracting text blocks in various Web images is presented here. Until now this area of work has been ignored by researchers even if this sort of text may be meaningful for internet users. The algorithms associated with the technique work without prior knowledge of the text orientation, size or font. In the work presented in this research, our text extraction algorithm utilizes useful edge detection followed by histogram analysis on the genuine characteristics of letters defined by text clustering region, to properly perform extraction of the text region that does not depend on font styles and sizes. By a number of experiments we have showed impressively acceptable results.

  • PDF

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF

A Study on Artificial Intelligence based Intrusion Detection System for Internet of Things (사물인터넷을 위한 인공지능 기반의 침입 탐지 시스템에 관한 연구)

  • Ryu, Jung Hyun;Kwon, Byung Wook;Suk, Sang Kee;Park, Jong Hyuk
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.145-148
    • /
    • 2018
  • 클라우드 컴퓨팅 기반 사물인터넷 환경은 급격히 증가하는 통신량, 기종 간 이질성, 지연 시간과 같은 문제점으로 인해 어려움을 겪고 있다. 이를 해결하기 위한 대표적인 방법 중 하나는 분산 모델을 통해 클라우드 컴퓨팅 환경에 집중된 네트워크 또는 컴퓨팅 파워를 분산시키는 포그 컴퓨팅 (Fog Computing) 또는 에지 컴퓨팅 (Edge Computing)을 활용하는 것이다. 그러나 이 분산형 네트워크의 단점을 보완하기 위해 사물인터넷 (IoT, Internet of Things)과 가장 가까이 존재하는 네트워크 모델로써 미스트 컴퓨팅 (Mist Computing)이 탄생하였다. 그러나 다양한 프로토콜에 의해 통신이 이루어지는 사물인터넷 환경에는 수천 가지 제로데이 공격이 존재한다. 이 공격들의 대부분은 이전에 알려진 공격의 작은 변형체이다. 이러한 공격을 효과적으로 막기 위해 사물인터넷 환경에서의 침입 탐지 시스템은 지능적이어야 한다. 따라서 본 논문에서는, 미스트 컴퓨팅 환경에서 새로운 또는 지속적으로 변화하는 사물인터넷 대상 공격을 효과적으로 방어하기 위한 인공지능 기반 침입 탐지 시스템을 제안한다.

Comprehensive Survey on Internet of Things, Architecture, Security Aspects, Applications, Related Technologies, Economic Perspective, and Future Directions

  • Gafurov, Khusanbek;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.797-819
    • /
    • 2019
  • Internet of Things (IoT) is the paradigm of network of Internet-connected things as objects that constantly sense the physical world and share the data for further processing. At the core of IoT lies the early technology of radio frequency identification (RFID), which provides accurate location tracking of real-world objects. With its small size and convenience, RFID tags can be attached to everyday items such as books, clothes, furniture and the like as well as to animals, plants, and even humans. This phenomenon is the beginning of new applications and services for the industry and consumer market. IoT is regarded as a fourth industrial revolution because of its massive coverage of services around the world from smart homes to artificial intelligence-enabled smart driving cars, Internet-enabled medical equipment, etc. It is estimated that there will be several dozens of billions of IoT devices ready and operating until 2020 around the world. Despite the growing statistics, however, IoT has security vulnerabilities that must be addressed appropriately to avoid causing damage in the future. As such, we mention some fields of study as a future topic at the end of the survey. Consequently, in this comprehensive survey of IoT, we will cover the architecture of IoT with various layered models, security characteristics, potential applications, and related supporting technologies of IoT such as 5G, MEC, cloud, WSN, etc., including the economic perspective of IoT and its future directions.

Multi-disciplinary convergence and fusion in food science and technology for future needs (미래식품분야에서의 학제 간 융·복합의 필요성과 실행 제안)

  • Shin, Dong-Hwa
    • Food Science and Industry
    • /
    • v.49 no.4
    • /
    • pp.19-30
    • /
    • 2016
  • Food industry in Korea is one of the most important manufacturing field since the history of this country. Recent days all industries in the world move to $4^{th}$ industrial revolution beginning from 1st revolution. This means that connections between human to human, human to things and things to things should be settled down. food industry in this country should escape from the conventional manufacturing fields until now and accept new or cutting edge technology NT including artificial intelligence robot system and platform system using Internet of Thing. To overcome the saturation condition of domestic food market, it should be extended our market to overseas. To do this Korean food industry should be reformed the processing system to convergence and fusion inner or multi-disciplinary research in not only research field but also manufacturing field. The food industry must introduce new technology and concept of controlling all manufacturing systems. This paper present the fields should be convergence and the field study together and the new techniques, methods and new products be developed in the future.

Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device (굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발)

  • Baek, Hee Seung;Shin, Jong Ho;Kim, Seong Joon
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.