• Title/Summary/Keyword: Edge devices

Search Result 451, Processing Time 0.032 seconds

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Emerging Technologies for Sustainable Smart City Network Security: Issues, Challenges, and Countermeasures

  • Jo, Jeong Hoon;Sharma, Pradip Kumar;Sicato, Jose Costa Sapalo;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.765-784
    • /
    • 2019
  • The smart city is one of the most promising, prominent, and challenging applications of the Internet of Things (IoT). Smart cities rely on everything connected to each other. This in turn depends heavily on technology. Technology literacy is essential to transform a city into a smart, connected, sustainable, and resilient city where information is not only available but can also be found. The smart city vision combines emerging technologies such as edge computing, blockchain, artificial intelligence, etc. to create a sustainable ecosystem by dramatically reducing latency, bandwidth usage, and power consumption of smart devices running various applications. In this research, we present a comprehensive survey of emerging technologies for a sustainable smart city network. We discuss the requirements and challenges for a sustainable network and the role of heterogeneous integrated technologies in providing smart city solutions. We also discuss different network architectures from a security perspective to create an ecosystem. Finally, we discuss the open issues and challenges of the smart city network and provide suitable recommendations to resolve them.

Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

  • Lin, Te-Yuan;Fuh, Chiou-Shann
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5654-5668
    • /
    • 2018
  • Driven by security and real-time demands of Internet of Things (IoT), the timing of fog computing and edge computing have gradually come into place. Gateways bear more nearby computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in between local devices and the remote cloud. In fog computing, the edge broker requires X-aware capabilities that combines software programmability, stream processing, hardware optimization and various connectivity to deal with such as security, data abstraction, network latency, service classification and workload allocation strategy. The prosperous of Field Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens data protection and resilience merits designed for industrial internet of things or highly privacy concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies rules into provable statements without knowing original sensitive data and guarantees privacy rules applied to the sensitive data before being propagated while preventing potential leakage threats. Some logical functions can be offloaded to any programmable micro-controller embedded to achieve higher computing efficiency.

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Numerical Study on the Erosion Tendency of Centrifugal Slurry Pump Impeller for Thermal Power Plants (화력발전소용 원심 슬러리 펌프 임펠러의 침식경향 해석적 연구)

  • Cheon, Min-Woo;Lee, Chul-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.101-108
    • /
    • 2022
  • Centrifugal pumps are typically used in many slurry industries to transport solid materials. Solid particles in the slurry frequently shock the walls inside the pump, significantly abrading the flow path. Wear damage causes replacement of the pump components, which wastes manpower and time. Therefore, previous studies have been conducted on factors to improve efficiency and life time. This study identifies trends in pumps supplying lime to desulfurized devices from thermal power plants. The shear stress transport(SST) model is used to determine the erosion trend of the centrifugal pump that transfers lime slurry. The purpose of this study is to identify efficiency and erosion trends by selecting three of the various impeller design elements. The three impeller blade design variables mentioned above represent the inlet draft angle and blade angle of leading edge(L.E) and trailing edge(T.E). The maximum value of the erosion density rate tends to be similar to the Input power.

Optimizing Energy-Latency Tradeoff for Computation Offloading in SDIN-Enabled MEC-based IIoT

  • Zhang, Xinchang;Xia, Changsen;Ma, Tinghuai;Zhang, Lejun;Jin, Zilong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4081-4098
    • /
    • 2022
  • With the aim of tackling the contradiction between computation intensive industrial applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in this paper. With the aim of reducing the task accomplished latency and energy consumption of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, offloading decision, and wireless and computation resources allocation jointly. Based on the optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the proposed method outperforms other baseline methods, and the optimization result shows that the latency-related weight is efficient for reducing the task execution delay and improving the energy efficiency.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

Resource Allocation and Offloading Decisions of D2D Collaborative UAV-assisted MEC Systems

  • Jie Lu;Wenjiang Feng;Dan Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.211-232
    • /
    • 2024
  • In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.