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Abstract 

 
With the aim of tackling the contradiction between computation intensive industrial 
applications and resource-weak Edge Devices (EDs) in Industrial Internet of Things (IIoT), a 
novel computation task offloading scheme in SDIN-enabled MEC based IIoT is proposed in 
this paper. With the aim of reducing the task accomplished latency and energy consumption 
of EDs, a joint optimization method is proposed for optimizing the local CPU-cycle frequency, 
offloading decision, and wireless and computation resources allocation jointly. Based on the 
optimization, the task offloading problem is formulated into a Mixed Integer Nonlinear 
Programming (MINLP) problem which is a large-scale NP-hard problem. In order to solve 
this problem in an accessible time complexity, a sub-optimal algorithm GPCOA, which is 
based on hybrid evolutionary computation, is proposed. Outcomes of emulation revel that the 
proposed method outperforms other baseline methods, and the optimization result shows that 
the latency-related weight is efficient for reducing the task execution delay and improving the 
energy efficiency. 
 
 
Keywords: SDIN, Edge computing, Computation offloading, Evolution Computation. 
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1. Introduction 

With the development of industry 4.0, Industrial Internet of things (IIoT) has become a 
promising technology to provide a strong and efficient backbone in intelligent manufacturing, 
in which there are many computation-intensive and latency-sensitive applications [1]. For 
these applications, the Mobile Edge Computing technology is introduced to enhance 
computation performances of Edge Devices (EDs). The MEC servers are closer than cloud 
center to EDs, thus it can ease the Internet traffic load, and be efficient for reducing 
communication latency and energy consumption through computation offloading. The MEC 
servers are also efficient for providing IaaS and PaaS services to guarantee real-time and 
energy-efficient task processing [2]. However, even the MEC technology can provide the 
above benefits, the protocol stacks in EDs are not efficient. Typically, in EDs, the control plane 
and data plane are independent (the control plane is responsible for controlling data forwarding, 
and the data plane completes data forwarding), thus the protocol overhead will increase the 
delay of task offloading. e.g., When a new device is connected to a IIoT environment, the 
control plane should be configured separately to complete the network protocol processing 
and computation functions [3], which will influence the real-time performance of IIoT 
applications. 
     Therefore, in IIoT, Software Defined Industrial Network (SDIN) architecture is utilized to 
separates the control plane from the EDs. Based on the SDIN architecture the EDs contain 
data plane, and the control plane is independent of the EDs. The SDIN architecture reduces 
the limitation of the network hardware, and realizes the automatic deployment and adjustment 
of the networks, reducing the delay of reconfiguring the control plane when new EDs join the 
IIoT network. 
     This paper considers SDIN-enabled MEC based IIoT network which combines the MEC 
and SDIN architecture. The network is similar to clustered network verified to be the network 
topology that is suitable for the IIoT environment. Due to the strict requirements of real-time 
and endurance in the IIoT, computation tasks are generated by industrial applications need to 
be accomplished in real-time. Thus, it is necessary to investigate the tradeoff between latency 
of accomplishing computation tasks (i.e., computation delay in local computing or latency of 
communication and computation in edge computing) and energy consumption for the optimal 
computation offloading in the SDIN-enabled MEC network. 
     The existing issues can be summarized as: 1) Energy consumption and latency are related 
to every process of completing the task (i.e., local computing, wireless communication and 
edge computing), thus it is necessary to jointly optimize each phase of computation offloading; 
2) Resource allocation in industrial networks generally cannot meet the QoS requirements of 
heterogeneous networks, while the superiority of SDIN is that the controller can have a global 
view of network resources, developing offloading strategies easier to guarantee diverse QoS 
demand. 

     With the aim of addressing the above problems, a tradeoff optimizing method is proposed 
in this paper which can jointly optimize offloading decision, local computing frequency, 
channel assignment, and transmission power while considering the limitation of computation 
resource. Based on the optimization, the proposed task offloading not only solves the issue of 
whether offload, but also tackles the tough issue of which MEC server is the optimal choice 
for task offloading. The contributions of this paper are listed below. 
• In order to realize the real-time processing of computation tasks in IIoT, the computation 

offloading model is mathematically developed in SDIN-enabled MEC based IIoT, 
including wireless communication model and task computation model. 
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• A latency-aware offloading scheme is proposed in this paper, which optimize the 
offloading decision, local frequency, wireless and computation resources allocation 
jointly.  

• The issue of optimal offloading scheme is mathematically expressed as a MINLP problem 
which is a large-scale NP-hard problem. A sub-optimization scheme GPCOA is proposed 
to tackle this issue in an accessible complexity. 

In proposed optimization algorithm, the variable decomposition approach is utilized to 
ensure that the original problem is split and transformed into two parts, both of which are 
independent: 1) local overhead and 2) edge overhead. A local frequency scheduling is proposed 
first to obtain the optimal local overhead, based on which, the remaining variables will be 
optimized by combining GA and PSO. 

The organization of the rest of this paper is as the following. Section II review the related 
work. The system model of SDIN-enabled MEC network is represented in section III. In 
section Ⅳ, we formulate the optimization problem into a MINLP problem mathematically and 
analyze the problem from the point of problem complexity. The proposed GPCOA is shown 
in section V. The simulation outcomes are demonstrated in section Ⅵ and this paper is 

concluded in Ⅶ. 

2. Related Work 
MEC can reduce the delay caused by core network congestion and data retransmission, 

which also cause additional energy consumptions, compared to the tasks processed in central 
cloud computing servers in IIoT. Computation offloading is a key technology in MEC, 
attracting more attentions in academia and industry communities. The energy consumption of 
EDs and delay of completing the computation task. 

Starting from the optimization of energy consumption in MEC, there are many research 
efforts utilizing heuristic algorithms [4] and machine learning algorithms [5] to optimize the 
related optimization problem in computation offloading and resource allocation to optimize 
the energy consumption in MEC based IIoT. In addition, with the aim of reducing the task 
accomplishing latency, some research efforts try to reduce the computation delay [6] and 
communication delay [7] through different optimization techniques. 

 After the separate optimization of energy consumption and task accomplishing delay, there 
are many researches focusing on the joint optimization of both of important indicator based 
on Lyapunov optimization and convex optimization [8], which jointly optimize the offloading 
decision, local CPU frequency and resource allocation. 

Nevertheless, with the development of intelligent factory, pure MEC may no longer meet 
the delay and energy consumption requirements of heterogeneous IIoT networks. SDIN has 
been supposed to be a promising architecture, which can improve the QoS of the industrial 
applications by flexibly decoupling data plane and the control plane to control the industrial 
network centrally. At present, combining SDIN with IIoT is recognized as an efficient way to 
optimize data transmission delay [9]. 

Different from the existing studies, a comprehensive computation offloading scheme in 
SDIN-enabled MEC based IIoT is proposed in this paper to exploit the tradeoff between 
energy consumption of EDs and delay of accomplishing corresponding tasks of EDs via 
optimizing local frequency, offloading decision, wireless and computation resources 
allocation, where the utilized weighting factor is delimited on the basis of the predicted latency 
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of the corresponding computation task. The optimization problem is proved to be a large-scale 
and also a NP-hard problem. In order to tackle such a complex problem, a sub-optimal 
algorithm GPCOA is proposed, and the details are in Sec.V. 

3. System Model 

3.1 SDIN-enabled MEC network 
Consider the SDIN-enabled MEC based IIoT comprising a macro base station (MBS) and 

M small base station(SBSs) and 𝑈𝑈 EDs as demonstrated in  Fig. 1. For presentation, the BS 
(including SBSs and MBS) set and the EDs set are denoted as 𝑁𝑁𝐵𝐵 = {1,2 … , 𝑗𝑗, … ,𝑀𝑀,𝑀𝑀 + 1} 
and 𝑈𝑈 = {1,2, … , 𝑖𝑖, … ,𝑈𝑈},respectively. With the aim of reusing spectrum, the multiple SBSs 
are assumed that operate in the same frequency band, which means that a small cell will 
interfere with the neighbor cells. The bandwidth is partitioned into N channels and the set of 
channels is denoted as 𝐶𝐶 = {1,2 … ,𝑛𝑛, …𝑁𝑁}. There are MEC servers equipped in MBS and 
SBSs, and the computation capacity of each SBS is variant due to the heterogeneity considered 
in the proposed SDIN-enabled MEC based IIoT. In this model, ED 𝑖𝑖 in cell 𝑗𝑗 is assumed to 
have a computation task 𝑇𝑇𝑖𝑖,𝑗𝑗 = {𝑑𝑑𝑖𝑖,𝑗𝑗 , 𝑐𝑐𝑖𝑖,𝑗𝑗, 𝜏𝜏𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝}  to accomplish. For task 𝑇𝑇𝑖𝑖,𝑗𝑗 , 𝑑𝑑𝑖𝑖,𝑗𝑗 
represents for the size of input data, 𝑐𝑐𝑖𝑖,𝑗𝑗 denotes the total number of CPU cycles required to 
complete the computation task, 𝜏𝜏𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum tolerance latency which is 
required by corresponding computation task, 𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝  represents the predicted latency of task 
which can be acquired by machine learning or other technology [10, 11]. We assume that the 
predicted latency of corresponding task is known in this paper. With aim of accomplishing the 
generated task, the EDs can either execute tasks locally, or offload the computation task to 
MEC servers. It is up to SDIN controller integrated in MBS to determine which MEC server 
to execute the offloading task. 

 

 
Fig. 1. SDIN-enabled MEC network 

 
Computation offloading in SDN-enabled edge computing primarily includes three phases: 

1) transmitting raw data via the wireless channel, 2) MBS with SDN controller decides which 
MEC server would be assigned to execute the task, 3) executing the task on ME server, 4) 
downloading outcomes from the servers back to the EDs. The total cost of the fourth phase are 
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not considered in this paper because of the truth that the size of resulting data is much smaller 
than input data and the bandwidth of the download is much larger than that of the upload [8].  

3.2 Communication Model 
In this subsection, a communication model is presented to describe the first phase of 

computation offloading.  
Here, the offloading decision of ED 𝑖𝑖 is defined as a binary variable 𝑎𝑎𝑖𝑖,𝑗𝑗, which indicates 

not only the task 𝑇𝑇𝑖𝑖,𝑗𝑗 whether offload but also where to offload decided by the SDIN controller 
in MBS server. In the case of the task of ED 𝑖𝑖 is offloaded to MEC server, we have 𝑎𝑎𝑖𝑖,𝑗𝑗 = 1, 
otherwise, 𝑎𝑎𝑖𝑖,𝑗𝑗 = 0. Particularly, it satisfies ∑ 𝑎𝑎𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑁𝑁𝐵𝐵 ≤ 1, indicating that one edge device 
can offload task to no more than one MEC server equipped in SBSs or MBS at the same time. 

In case of that ED 𝑖𝑖 accesses the SBS on channel n, the achievable uplink transmission 
rate can be represented as: 
                                         𝑟𝑟𝑖𝑖,𝑗𝑗,𝑛𝑛 = 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙2(1 + 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑛𝑛ℎ𝑖𝑖,𝑗𝑗,𝑛𝑛

𝜎𝜎2+𝐼𝐼𝑖𝑖,𝑗𝑗,𝑛𝑛
)                                                         (1) 

where w is the bandwidth, w=B/N,  𝑝𝑝𝑖𝑖,𝑗𝑗,𝑛𝑛 and ℎ𝑖𝑖,𝑗𝑗,𝑛𝑛 are the transmission power and the channel 
gain between the ED𝑖𝑖  and SBS 𝑗𝑗 on channel 𝑛𝑛, respectively. 𝜎𝜎2 represents for the background 
noise, which is assumed to follow Gaussian distribution. 𝐼𝐼𝑖𝑖,𝑗𝑗,𝑛𝑛   represents for the cahnnel 
interference of ED 𝑖𝑖 in cell suffering from other EDs in the adjacent cells on the same channel, 
which can be expressed as 

i,j,n , , , , , ,
1,

I
lU M

j
k l n k l n k l n

k l l l i
b p h

= = ≠

=∑ ∑                                                  (2) 

where 𝑙𝑙 denotes the  𝑙𝑙 − 𝑡𝑡ℎ except the 𝑗𝑗 − 𝑡𝑡ℎ SBS, the channel gain from ED k in cell 𝑙𝑙 to 
cell j on channel n id denoted by ℎ𝑘𝑘,𝑙𝑙,𝑛𝑛

𝑗𝑗 , and 𝑈𝑈𝑙𝑙 represents for the number of the EDs in the 
area covered by SBS 𝑙𝑙. Therefore, the total uplink transmission rate for ED 𝑖𝑖 can be 
expressed as  
                                                               𝑟𝑟𝑖𝑖,𝑗𝑗 = ∑ 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛𝑟𝑟𝑖𝑖,𝑗𝑗,𝑛𝑛

𝑁𝑁
𝑛𝑛=1 ,                                                     (3) 

where 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛 ∈ {0,1}. When channel k is allocated to ED 𝑖𝑖 in cell 𝑗𝑗, 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛=1, otherwise, 
𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛 = 0. 

3.3 Computation Model 
The computation model is presented in this subsection, describing how the computation task 

either executed on the EDs locally or offloaded. 
1) Local computing: we denote the local computation capacity (i.e., CPU 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐻𝐻𝐻𝐻)) of the ED 𝑖𝑖 as 𝑓𝑓𝑖𝑖,𝑗𝑗𝐿𝐿 , in the case of the computation task is executed locally, the 
delay can be expressed as  
                                                                           𝑡𝑡𝑖𝑖,𝑗𝑗𝐿𝐿 = 𝑐𝑐𝑖𝑖,𝑗𝑗

𝑓𝑓𝑖𝑖,𝑗𝑗
𝐿𝐿 ,                                                      (4) 

The energy consumption of the ED can be represented as 
                                                                                     𝑒𝑒𝑖𝑖,𝑗𝑗𝐿𝐿 = 𝑘𝑘′(𝑓𝑓𝑖𝑖,𝑗𝑗𝐿𝐿 )2𝑐𝑐𝑖𝑖,𝑗𝑗 ,                                        (5) 
Where 𝑘𝑘′ is a variable relying on the architecture of chip, the value of which equals 10−26 
[12]. 

Through the local computing model above, we can find out that both delay and energy 
consumption of local computing are affected by the local computation ability 𝑓𝑓𝑖𝑖,𝑗𝑗𝐿𝐿 . Thus, in this 
paper, it is allowed that to the 𝑓𝑓𝑖𝑖,𝑗𝑗𝐿𝐿  can be schemed through dynamic voltage and frequency 
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scaling technology (DVFS). 
2) Edge Computing: when the offloading decisions have been made by SDIN controller at 

the MBS, the computation task will be transferred to the aimed server equipped in the SBSs 
or MBS (i.e., the first two period). The computation task then will be executed on the target 
MEC server (the third stage). On the basis of the model demonstrated above, the latency and 
the energy consumption due to transmission can be given below, respectively. 

   𝑡𝑡𝑖𝑖,𝑗𝑗𝐸𝐸 = 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑟𝑟𝑖𝑖,𝑗𝑗

+ 𝑐𝑐𝑖𝑖,𝑗𝑗
𝐹𝐹𝑖𝑖,𝑗𝑗

                                                                   (6) 

 and 
                                                        𝑒𝑒𝑖𝑖,𝑗𝑗𝐸𝐸 = ∑ 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛𝑝𝑝𝑖𝑖,𝑗𝑗,𝑛𝑛

𝑑𝑑𝑖𝑖,𝑗𝑗
𝑟𝑟𝑖𝑖,𝑗𝑗

𝑁𝑁
𝑛𝑛=1                                                       (7) 

where 𝐹𝐹𝑖𝑖,𝑗𝑗 represents for the computation resource assigned to ED 𝑖𝑖 from MEC server 𝑗𝑗. 
The finite computation capacity of various MEC server, which is defined as 𝐹𝐹𝑗𝑗, when j= 

M+1, 𝐹𝐹𝑀𝑀+1 represents for the limited computation resources of the MEC server equipped in 
MBS. Both delay and energy consumption are fatal for EDs in the process of completing the 
computation task. Thus, a weighting factor 𝑤𝑤𝑖𝑖,𝑗𝑗 (𝑤𝑤𝑖𝑖,𝑗𝑗 ∈ [0,1]) have been introduced to exploit 
the tradeoff between both of them in SDIN-enabled edge computing, which can be defined by 
various EDs for different purpose. By means of revising the value of weighting factor, we can 
save more energy or reduce more latency. Besides, we bring the prediction latency 𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝 into 
the definition of indicator in our model, which can be expressed as 

                                                        𝑤𝑤𝑖𝑖,𝑗𝑗
′ = 𝑤𝑤𝑖𝑖,𝑗𝑗𝑟𝑟𝑖𝑖,𝑗𝑗𝑡𝑡                                                                    (8)  

where 𝑟𝑟𝑖𝑖,𝑗𝑗𝑡𝑡 =
𝜏𝜏𝑖𝑖,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡𝑖𝑖,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝

𝜏𝜏𝑖𝑖,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚  . Different from 𝑤𝑤𝑖𝑖,𝑗𝑗 , 𝑟𝑟𝑖𝑖,𝑗𝑗𝑡𝑡   , which is a definite value related to delay, 

reflects the significance of latency optimization for each computation task 𝑇𝑇𝑖𝑖𝑖𝑖, the smaller the 
value of 𝑟𝑟𝑖𝑖,𝑗𝑗𝑡𝑡 ,the more important the computation task 𝑇𝑇𝑖𝑖,𝑗𝑗 is to focus on optimization of latency. 
Given the offloading decision of corresponding ED 𝑖𝑖 , ED  𝑖𝑖  is allocated with part of 
computation resource 𝐹𝐹𝑖𝑖,𝑗𝑗  from servers, e the computation resource allocation set 𝐹𝐹 =
�𝐹𝐹𝑖𝑖,𝑗𝑗, 𝑗𝑗 ∈ 𝑁𝑁𝐵𝐵, 𝑖𝑖 ∈ 𝑈𝑈� can be obtained. Taking the limited and various computation resource of 
variant MEC server into consideration, F must meet limit: ∑ 𝐹𝐹𝑖𝑖,𝑗𝑗 ≤ 𝐹𝐹𝑖𝑖𝑖𝑖∈𝑈𝑈 , 𝑖𝑖 ∈ 𝑁𝑁𝐵𝐵, meaning 
that the computation resource required to complete the task of EDs must under the computation 
capacity of corresponding server. 
    Through the analysis above, the total cost of ED 𝑖𝑖 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿  can be defined as 

𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 = 𝑤𝑤𝑖𝑖,𝑗𝑗′ 𝛼𝛼𝑒𝑒𝑖𝑖,𝑗𝑗𝐿𝐿 + (1 −𝑤𝑤𝑖𝑖,𝑗𝑗′ )𝑡𝑡𝑖𝑖,𝑗𝑗𝐿𝐿                                    (9) 
where α, which is used to realize the combination of two variables with variant units, can 

be expressed as the ratio of average energy consumption and average latency of all tasks. We 
let 𝑤𝑤𝑖𝑖,𝑗𝑗𝑡𝑡 = 1 −𝑤𝑤𝑖𝑖,𝑗𝑗′   and 𝑤𝑤𝑖𝑖,𝑗𝑗𝑒𝑒 = 𝑤𝑤𝑖𝑖,𝑗𝑗′  , and they indicate the weightings of execution energy 
consumption and latency, respectively. Thus, the total cost of single ED 𝑖𝑖 can be replaced as 
𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 = 𝑤𝑤𝑖𝑖,𝑗𝑗𝑡𝑡 𝑡𝑡𝑖𝑖,𝑗𝑗𝐿𝐿 + 𝑤𝑤𝑖𝑖,𝑗𝑗𝑒𝑒 𝑒𝑒𝑖𝑖,𝑗𝑗𝐿𝐿 . 
    Analogously, the cost of the computation task executed remotely can be represented as 
                                                                             𝑆𝑆𝑖𝑖,𝑗𝑗𝐸𝐸 = 𝑤𝑤𝑖𝑖,𝑗𝑗𝑡𝑡 𝑡𝑡𝑖𝑖,𝑗𝑗𝐸𝐸 + 𝑤𝑤𝑖𝑖,𝑗𝑗𝑒𝑒 𝑒𝑒𝑖𝑖,𝑗𝑗𝐸𝐸                                      (10) 
   Therefore, the total cost of ED 𝑖𝑖 can be denoted by 
                                                                 𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖,𝑗𝑗𝑆𝑆𝑖𝑖,𝑗𝑗𝐸𝐸 + (1 − 𝑎𝑎𝑖𝑖,𝑗𝑗)𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 .                                     (11)  
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4. Problem Formulation and Analysis 

4.1 Problem Formulation 
For given the set of offloading decisions A, the set of channel assignment B and the set of 

computation resources allocation F, we obtain the total cost for accomplishing the computation 
task of ED 𝑖𝑖. The main problem needed to be addressed in this paper is shown in (12). 
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C1 and C2 represents for the constraints of latency and energy consumption of corresponding 
task, respectively. C3 limits the range of local frequency and C4 ensures that each ED can only 
offload the computation task to no more than one server. C5 ensures the maximum 
transmission power of ED 𝑖𝑖 in cell 𝑗𝑗 . C6 indicates that the impact of offloading task on SENB 
caused by other EDs must under the predefined threshold. C7 means that each ED can be 
assigned no more than one channel. C8 indicate that binary variables are utilized to 
demonstrate offloading decision and channel assignment. C9 represents that the computation 
resource assigned to ED 𝑖𝑖 by MEC serve𝑟𝑟 j cannot exceed its capacity. 

4.2 Problem Analysis 
The formulation 𝑃𝑃0  in (12) aims to reduce the total cost of all EDs, through optimizing 

offloading decision, channel allocation, transmission power, and computation resource 
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assignment. Since computation offloading decision 𝑎𝑎𝑖𝑖,𝑗𝑗 and channel allocation indicator 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑛𝑛 
are binary variables, the formulated problem 𝑃𝑃0  is a mixed inter non-linear programming 
problem (MINLP), which is a NP-hard problem, making 𝑃𝑃0 non-smooth and non-continuous, 
and the optimal solution of 𝑃𝑃0 is intractable. 

In addition, in SDIN-enabled edge computing networks, this may be a large scale MINLP 
problem. As IIoT evolving, the numbers of both EDs and SBSs are in exponential growth, 
resulting in higher complexity of the formulated problem. Thus, it is impractical to do an 
exhausting search.  

5. Proposed Algorithm 
With above analyses, with the aim of getting the optimal solution to problem 𝑃𝑃0, local 

CPU-cycle frequency, the computation offloading decision, optimization of transmission 
power and resource (i.e., wireless and computation resources) allocation need to be considered 
concurrently. In SDIN-enabled edge computing network, the numbers of EDs and SBSs may 
up to hundreds and tens, respectively, resulting in the extremely high complexity of 
computation. Thus, low-complexity suboptimal algorithms are needed more than ever. 

Despite that 𝑃𝑃0 is non-convex, the problem 𝑃𝑃0 is split and transform into two parts: 1) local 
overhead and 2) edge overhead.  

A suboptimal scheme based on hybrid evolutionary computation, which combine GA and 
PSO, named as GPCOA is proposed. The proposed GPCOA consists of two parts: The first 
part aims to obtain the optimal local CPU-cycle frequency to reduce local computing overhead, 
then the GPCOA is proposed to obtain a sub-optimal solution to the optimization problem in 
an accessible time complexity. 

The proposed GPCOA is a meta-heuristic algorithm eventually, and the reason why we 
call it sub-optimal algorithm is that some operations in heuristic algorithm, such as selection, 
crossover and mutation, have random nature, and is easy to trap into local optimal solution. 

 
Algorithm 1 GPCOA 
1: Input: Population size K, the maximum number of iterations: T, convergence criteria ε, the 
parameters of evolution computing: 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑐𝑐 ,𝑇𝑇1 𝑎𝑎𝑎𝑎𝑎𝑎  𝜔𝜔, 𝑐𝑐1, 𝑐𝑐2,T2, respectively. 
2: Outcome: The historical optimal individual. 
3: Initialization: Each individual of population is initialized via (17) and the value of t equal 0. 
4: Step 1: Obtain the optimal local frequency 𝑓𝑓∗,𝑓𝑓𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓ℎ via (14).  
5: Step 2:if t>T or Fitness(t)-Fitness(t-1) <= ε. break; else conduct next step. 
6: Step 3: Perform GA as shown in Algorithm 2. 
7: Step 4: Conduct PSO. 
8: Step 5: t=t+1, back to step 2. 
 

 

5.1 The Process of GPCOA 
All tasks generated by devices can either be executed locally or remotely via computation 

offloading, and one of the variable we need optimize is the offloading decision. The reason 
why we decouple the origin problem into two problem is that the formulated problem involve 
not only the cost of local computing but also the remote computing via computation offloading. 
Therefore, We can optimize the local computation to get an overall optimal. In order to tackle 
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such a large-scale and NP-hard problem, we first optimize the overhead of local computing by 
scheduling the local frequency of EDs, taking the constraints C1-C3 in formulated problem 𝑝𝑝0 
into consideration, the minimization of local computing overhead can be formulated below: 
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We can see that the overhead of ED is only related to 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙  . We define 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 (𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 ) =
𝑤𝑤𝑖𝑖,𝑗𝑗𝑡𝑡 (𝑐𝑐𝑖𝑖,𝑗𝑗 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙⁄ ) + 𝑤𝑤𝑖𝑖,𝑗𝑗𝑒𝑒 𝑘𝑘′(𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 )2𝑐𝑐𝑖𝑖,𝑗𝑗, 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 (𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 )  is taken the derivative with respect to 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 , and let it 

to be zero, thus, we can obtain 𝑓𝑓∗ = �(𝑤𝑤𝑖𝑖,𝑗𝑗𝑡𝑡 2𝑤𝑤𝑖𝑖,𝑗𝑗𝑒𝑒 𝑘𝑘� )3 . For 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 < 𝑓𝑓∗, the monotony of 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿  is 

the opposite of the monotony of 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 , otherwise, the monotony of them is the same. In addition, 

from C1-C2, we have 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 ≥ 𝑐𝑐𝑖𝑖,𝑗𝑗 𝑇𝑇𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚⁄ = 𝑓𝑓𝑙𝑙  and 𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 ≤ �𝐸𝐸𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘′𝑐𝑐𝑖𝑖,𝑗𝑗⁄ = 𝑓𝑓ℎ , respectively. 

Combining that result with the constraint C3, we can obtain𝑓𝑓𝑙𝑙′ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿 , (𝑐𝑐𝑖𝑖,𝑗𝑗 𝑇𝑇𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚⁄ )} and 

𝑓𝑓ℎ′ = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿 ,�𝐸𝐸𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘′𝑐𝑐𝑖𝑖,𝑗𝑗⁄ }, respectively. Thus, the optimal 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿 (𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 ) can be calculated as 

the following: 
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After getting 𝑆𝑆𝑖𝑖,𝑗𝑗𝐿𝐿∗�𝑓𝑓𝑖𝑖,𝑗𝑗𝑙𝑙 �, the 𝑃𝑃0 can be transformed into the form of the problem 𝑃𝑃2 as follows: 
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Nevertheless, the new transformed problem is still a large-scale NP-hard issue. 
There are many meta-heuristic algorithms can tackle MINLP problem. GA adopt the idea 

of evolution, its effect on MIP problem has been proved. However, it converges lower than 
other algorithms. The characteristics of PSO, which is easy to conducted and the speed of 
convergence is fast, are the opposite. Therefore, PSO is skilled at hunting for the local region 
but is weak in ferreting about the global zone. The performance of GPCOA is promoted via 
utilizing PSO as a complement to GA. We utilize GA for a rough global search while PSO is 
utilized for more detailed local search as demonstrated in Algorithm 1. 
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In GPCOA, we first obtain the optimal local computing overhead and initialize the 
population, then the original solutions will be optimized by two variant evolution computing, 
each of which does good in different aspect, iteratively until algorithm convergence or the 
value of t equal T. In each iteration of GPCOA, the individuals are operated by GA for 𝑇𝑇1 
iteration, then the optimized results conducted by GA are input into the PSO and the 
parameters of PSO will be initialized. After particles optimized by PSO for 𝑇𝑇2 iterations, one 
iteration of GPCOA is done. The outcome of PSO will be optimized by another evolution 
computing again. Namely, the outcome of GA and algorithm 3 are input and output to each 
other except the first iteration of GPCOA. The initialization of algorithm 2 is expressed as (17). 
Two evolution computing algorithms utilized in GPCOA are described in details in the 
following subsections. 

5.2 GA 
GA is a metaheuristic algorithm, which tackle complex problem by mimicking biological 

evolution. The only requirement of GA is that the problem to be tackled is computable. GA 
optimizes the initial solutions via some genetic operations (i.e., selection, crossover and 
mutation) until that an acceptable solution is obtained or reach the maximum number of 
iterations. In particular, the crossover and mutation operation of GA can amplify the search 
region, thus, GA does well in searching the global domain. 

The GA utilized in GPCOA is described below. 
1)Architecture of Chromosome: The coding mode of GA is selected as real coded for the 

purpose of simplicity. The chromosome in GA is the solution to problem P2.  
      2) Fitness Function: Proposed function is utilized to estimate how suitable the individual 
is, which is shown as the following 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ 𝑠𝑠𝑖𝑖,𝑗𝑗𝑖𝑖∈𝑈𝑈,𝑗𝑗∈𝑁𝑁𝐵𝐵 (𝐴𝐴,𝐵𝐵,𝑃𝑃,𝐹𝐹) + 𝛼𝛼𝑖𝑖 ∑ (𝑇𝑇𝑖𝑖,𝑗𝑗(𝐴𝐴,𝐵𝐵,𝑃𝑃,𝐹𝐹, ) − 𝜏𝜏𝑖𝑖,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)𝑗𝑗∈𝑁𝑁𝐵𝐵 ,𝑖𝑖∈𝑈𝑈             (16) 
The fitness function is composed of two parts, the former part is the objective function to 

be optimized, and the later part is the penalty function (𝛼𝛼𝑖𝑖  is the penalty factor). Fitness 
function is composed of two parts, the former part is the objective function to be optimized. 

3) genetic operations of GA: In this paper, the first iteration of GPCOA is a random 
generation, but must fit the constraints in problem 𝑝𝑝0. The genes of initial individual will be 
created as the following 
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where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(~) is a function, the function of which is to output a value from the set of ~ 
randomly? 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) can output a number between 0 and x randomly. 
      For the selection operation, the tournament is employed in this paper. Genetic operations 
(i.e., selection, crossover and mutation) are utilized iteratively to initial population to generate 
a better solution to the problem. For crossover, the pre-defined crossover probability 𝑝𝑝𝑐𝑐  is 
utilized to select two individuals to exchange corresponding segments randomly to generate 
offspring. For mutation operation, an individual will be selected firstly, after that, each 
substance of individual will mutate with 𝑝𝑝𝑚𝑚 within the range of variables defined in problem 
𝑝𝑝0. 
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Algorithm 2 GA 
1: Input: The size of the population K, the iteration of GA 𝑇𝑇1, pm, pc. 
2: Outcome: The historical best individual and K optimized individual. 
3: Initialization: K individuals are initialized using (17) and set 𝑡𝑡1=0. 
4: Step 1: if 𝑡𝑡1>𝑇𝑇1.break; else conduct step 2. 
5: Step 2: Compute the fitness function of individuals to estimate how suitable it is. 
6: Step 3: Seek out the best individual 𝑃𝑃𝑡𝑡1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, and record it in the historically optimal set 𝑂𝑂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . If 
𝑃𝑃𝑡𝑡1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is better than 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , then replace the value of 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 with 𝑃𝑃𝑡𝑡1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, else remain the same. 

7: Step 4: Choose K individuals on the basis of tournament rule.  
8: Step 5: Select two individuals at random performing the crossover operation with  𝑃𝑃𝑐𝑐. 
9: Step 6: Perform mutation operation with probability 𝑃𝑃𝑚𝑚 on each individual. 
10: Step 7: t1=t1+1, and go to step 1. 

5.3 PSO 
The traditional PSO is utilized in GPCOA to improve the convergence. The position and 

velocity of particles are updated according to the below principles, respectively. 
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Where 𝜔𝜔  is an inertia weight, 𝑐𝑐1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐2  are acceleration instants 𝑟𝑟1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟2  are both 
generated between [0,1], and the function of which is to enhance the randomness of the search. 
The utilized PSO is a traditional version, so the description of which is skipped. 

6. Simulation Results and Discussion 

6.1 Simulation Settings 
With aim of estimating the behavior of the proposed GPCOA, a SDIN-enabled MEC 

network is considered, where M cells with 100m in radius are randomly scattered over the 
network. The MBS with SDIN controller locates at the origin while SBSs and EDs are 
distributed at random in this area, and other significant parameters are listed in Table 1. 

 
Table 1. The Emulation Parameters 

Parameters Value 
The channel bandwidth B 180KHz 
Background noise 𝑁𝑁0 
Local energy consumption 
The maximum transmission power of EDs 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  
Data size to offload 𝑑𝑑𝑖𝑖,𝑗𝑗  

10−13 
1 𝐽𝐽/𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

1 W 
200~400KB 

CPU cycles per bit required by offloading task 500~1000 
Computation capacity of EDs 𝐹𝐹𝑖𝑖,𝑗𝑗𝐿𝐿  0.2~1 GHz 
Computation capacity of SBSs 𝐹𝐹𝑗𝑗 
Computation capacity of MBS 𝐹𝐹0 
The size of population K 
Mutation probability 𝑝𝑝𝑚𝑚 
Probability of crossover 𝑝𝑝𝑐𝑐 
The number of selected individuals in tournament 𝑁𝑁𝑡𝑡 
The parameters of PSO w/𝑐𝑐1/𝑐𝑐2 

2.5GHz 
25GHz 

18 
0.02 
0.54 

5 
         0.45/1.495/1.495 
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To evaluate the algorithm proposed in this paper, we first compare the proposed optimal 
frequency scheduling with weight related to predicted latency with five baseline algorithms to 
prove the effectiveness of the scheme. “AL” and “AM” indicate all tasks executed by EDs and 
the MEC server, respectively. Then we compare the convergence and the performance of 
GPCOA with four baselines: GACA, which is based on GA, local computing (LC), random 
offloading algorithm (ROCA) and PSO based offloading algorithm (PSOA). In ROCA, the 
principle of task offloading is random or executed locally and select transmission power, and 
the SBSs randomly allocate channels and computation resource to EDs as well. In LCA, all 
computation of EDs will be executed locally. Finally, the tradeoff between energy consumption 
of EDs and latency of accomplishing corresponding tasks is investigated. 

6.2 Evaluation on frequency scheduling 
In this subsection, we estimate proposed the frequency scheduling with weighting factor 

related to predicted latency algorithm. Taking a multicell scenario into consideration, where 
each cell shares the same spectrum. EDs access each SeNB through OFDMA. We assume that 
each SBS has ten channels while provide service for  𝑈𝑈𝑗𝑗 EDs. Fig. 2 describes the influence of 
the local computing frequency of EDs on the delay and energy consumption under different 
numbers of small cells.𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2 𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 = 1𝐺𝐺𝐺𝐺𝐺𝐺 are the minimum and maximum 
local computing CPU-cycle frequency, respectively. 

 

 
Fig. 2. Influence of the local computing frequency of EDs on (a)energy consumption and (b)latency 

under different cells 
 

We can observe that in the situation of 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, the energy consumption is much more than 
that in the situation of 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, and energy consumption of all EDs in the situation of proposed 
optimal frequency scheduling is much better than that under 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 and a little bit higher than 
that under 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. The latency in the situation of 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is much lower than that under 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 with 
the number of small cells increasing, and the latency under optimal frequency scheduling 
proposed in this paper is much lower than that under 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and is a little bit higher than that in 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚. Thus, the optimal frequency scheduling proposed in this paper can perform better in 
terms of energy consumption than 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and lower delay than 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 to get a tradeoff via local 
computing scheduling. It is noted that the introduction of weight factor and the proposed 
frequency scheduling in this paper can achieve a gratifying total cost. We also compare the 
local frequency scheduling proposed in this paper with proposed scheme in [8] in which the 
weighting factor is related to the residual energy of smart mobile devices. As we can see that 
the optimal frequency scheduling proposed in this paper can obtain lower delay than the 
scheme in [8] but the scheme in [8] can obtain lower energy consumption than scheme 
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proposed in this paper. In general, the CPU-cycle frequency scheduling proposed in this paper 
can obtain better performance.  

6.3 Analysis of convergence 
The effect of variant parameters on the convergence of GPCOA have been investigated in 

Fig. 3, and the comparison of convergence of disparate algorithm is conducted in Fig. 4. 
There existing some significant parameters in genetic algorithm (i.e., K, 𝑝𝑝𝑚𝑚  and 𝑝𝑝𝑐𝑐 

mentioned above). We observe from Fig. 3 (a), the performance of GPCOA is best when K=18. 
The reason is that when K is big (e.g., K=36), the size of population is so big that algorithm is 
hard to converge and this situation will contribute to wasting of resource. Another reason is 
that the diversity of population is not large enough when K is small (e.g., K=9). We can arrive 
at a conclusion from Fig. 3 (b), the performance of GPCOA drops with 𝑝𝑝𝑚𝑚  increasing. 
Because the operation of mutation is with randomness, it doesn’t make reference to any prior 
message. 𝑝𝑝𝑚𝑚 is designed to increase the diversity of ethnic, a big probability may violate this 
principle. As we can observe from Fig. 3 (c), the total cost of proposed GPCOA first rises then 
drops with the growth of 𝑝𝑝𝑐𝑐. We can obtain that GPCOA converge fastest in the situation of 
𝑝𝑝𝑐𝑐 = 0.54. That is because a small 𝑝𝑝𝑐𝑐 can’t effectively renew the population, while a big 𝑝𝑝𝑐𝑐 is 
easy to destroy the favorable mode an, increase the randomness, and miss the optimal 
individual easily. Hence, the value of k is set to equal 18, 𝑝𝑝𝑐𝑐 = 0.54  and 𝑝𝑝𝑚𝑚 = 0.02  for 
proposed GPCOA. 

 

 
 

Fig. 3. convergence of GPCOA of variant parameters (a)The total cost versus the Iteration with 
disparate K.(b) with different crossover probability 𝑝𝑝𝑐𝑐.(c) with different mutation probability 𝑝𝑝𝑚𝑚. 

 
 

The convergence of the proposed GPCOA is proved via being compared to other some 
baseline, as shown in Fig. 4. We can observe that PSO converges fastest while PSOCA is likely 
to trap into a local optimal solution, then follows GPCOA and GA, and the behavior of GACA 
lies between PSOCA and GPCOA. It is reasonable, due to that proposed GPCOA combines 
the advantages of strong global searching ability of GA and the advantages of strong local 
searching ability of PSO, and PSO in GPCOA can boost the speed of convergence of algorithm. 
Thus, single PSO or GA is not as convergent as GPCOA. 
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Fig. 4. The convergence comparison of three algorithms 

 
In order to prove the effectiveness of the proposed GPCOA, we compare the proposed 

GPCOA with verified Brute Force Searching Algorithm (VBFS), which can obtain the optimal 
solution to show the distance between proposed GPCOA and the optimal solution. As we can 
observed from Fig. 5 that the proposed GPCOA has a good convergence and robustness. Firstly, 
the proposed GPCOA  converge quickly, and the performance becomes better along with the 
number of iteration rounds.Although the ultimate performance of GPCOA is still far way from 
the optimal performance, the distance is very small. Thus, a trade off between the acceptable 
performance and the time complexity exits. 

 

 
 

Fig. 5. The performance comparison of GPCOA and VBFS 
 

6.4 Performance Analysis 
In this subsection, the proposed GPCOA is testified through being compared with other 

baseline algorithms under different parameters. The relationship between GPCOA 
performance and the computation capacity is shown in Fig. 5, in this situation, we assume that 
SBSs have 30 channels. In the wake of the increased computation resources, the total cost 
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decreasing and the number of offloading EDs increasing. When the computation resource 
reaches a certain number, both of them become steady. That is because when the limit of 
computation resource of MEC server is easy to reach, the number of EDs, task of which is 
offloaded, is small because of the long execution delay, contributing to many EDs executing 
their computation task locally. Instead, when the limit of computation resource of SBS is hard 
to get, it is active for EDs to offload to get a low cost. It can be concluded from Fig. 5 that it 
is significant to match wireless resource and the computation resource. 

 
Fig. 5. The behavior of GPCOA versus the limit of computation resource of MEC server. 

 
In order to prove the availability of proposed GPCOA, the performance of GPCOA is 

compared with other baseline algorithms: GACA, PSOCA, ROA and LCA. Fig. 6 shows the 
relationship between the total cost obtained by variant algorithms and the number of EDs from 
0 to 300. 

 
Fig. 6. The total cost versus the number of EDs with variant algorithms. 

 

With the observation from Fig. 6 that the performance of GPCOA outperforms other 
baseline algorithms. GPCOA, GACA and PSOCA perform offloading decision making, power 
control, computation resource assignment, channel allocation together, especially, GPCOA 
also adopt the optimal local frequency scheduling. Thus, GPCOA outperformances other 
baseline algorithms. Finally, we investigate the influence of the weight factor defined in system 
model on performance of GPCOA. The tradeoff between latency of computation task and 
energy consumption of EDs for disparate numbers of cells is exploited in Fig. 7. With the 
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observation that the weight factor proposed in this paper can save more energy and 𝑤𝑤𝑖𝑖,𝑗𝑗  =
 0.8  and can obtain lower delay than all the baseline algorithms except when 𝑤𝑤𝑖𝑖,𝑗𝑗  =  0.8 . 
However, when 𝑤𝑤𝑖𝑖,𝑗𝑗  =  0.8, the energy consumption of EDs is very huge. The observed total 
cost is also lower than majority of baseline algorithms except when 𝑤𝑤𝑖𝑖,𝑗𝑗  =  0.2.  

 
Fig. 7. Tradeoff between energy consumption of EDs and latency of their tasks  

7. Conclusion 
The tradeoff between energy consumption of EDs and latency of completing the tasks for 

SDIN-enabled MEC based IIoT is exploited in this paper. To decrease the total cost of EDs, 
we jointly take the computation offloading, communication and computation resources 
assignment into consideration, and propose a latency-aware weighting factor based on the 
predicted latency of computation task of EDs. First, a computation offloading model in SDIN-
enabled MEC network is introduced, and we formulate the main problem into a MINLP 
problem. Then we propose GPCOA to tackle such a complex problem. Ultimately, the 
convergence and performance of proposed GPCOA have been verified by emulation. 
Outcomes of simulation reveal that the proposed GPCOA outperforms other baseline 
algorithms.The generation of individuals in the initial population of most swarm intelligence 
algorithms is random within a given range, resulting in large randomness and uncertainty of 
the initial individuals. Therefore, we plan to use tent chaotic map to initialize to achieve the 
improvement of local development and global exploration capabilities. 
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