
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, Dec. 2018 5654
Copyright ⓒ 2018 KSII

Zero-Knowledge Realization of

Software-Defined Gateway in Fog
Computing

Te-Yuan Lin1 and Chiou-Shann Fuh2

1 Department of Computer Science and Information Engineering, National Taiwan University
Taipei, Taiwan - ROC

[e-mail: d03922002@ntu.edu.tw]
2 Department of Computer Science and Information Engineering, National Taiwan University

Taipei, Taiwan - ROC
 [e-mail: fuh@csie.ntu.edu.tw]

*Corresponding author: Te-Yuan Lin

Received May 9, 2018; revised July 6, 2018; accepted August 15, 2018;
published December 31, 2018

Abstract

Driven by security and real-time demands of Internet of Things (IoT), the timing of fog
computing and edge computing have gradually come into place. Gateways bear more nearby
computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in
between local devices and the remote cloud. In fog computing, the edge broker requires
X-aware capabilities that combines software programmability, stream processing, hardware
optimization and various connectivity to deal with such as security, data abstraction, network
latency, service classification and workload allocation strategy. The prosperous of Field
Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further
landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog
computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens
data protection and resilience merits designed for industrial internet of things or highly privacy
concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing
commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies
rules into provable statements without knowing original sensitive data and guarantees privacy
rules applied to the sensitive data before being propagated while preventing potential leakage
threats. Some logical functions can be offloaded to any programmable micro-controller
embedded to achieve higher computing efficiency.

Keywords: Cloud security, Fog Computing, IoT, SDG, Zero-Knowledge

http://doi.org/10.3837/tiis.2018.12.003 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5655

1. Introduction

The terms fog computing and edge computing are used interchangeably often in the industry,
yet they have differences in emphasized nature. Both are pushing intelligence and processing
capabilities to where the data is collected to minimize latency, however, fog computing pays
more attention on applications of fog nodes and routes filtered data to the optimal place for
analysis while sustaining the data privacy inside the protected network. Fog nodes can be
equipped with quite powerful computing, scalable memory or storage capacity and
inter-connected in a mesh network topology to form as a fog layer infrastructure. The fog layer
plays as a bridge as illustrated in Fig. 1[1][2], it is closer to data source than cloud and hence to
achieve lower transmission latency, to strengthen managed capabilities and to orchestrate the
heterogeneous application and devices in between the cloud layer and the thing layer. For
industrial scenarios, realizing resilient connectivity and intelligent computing possibility are
just right characteristics in favor for fog computing yet hard to gain from public cloud
platform.

Though the concept of fog computing is emerging prosperously, more detail of applied
problems need to be rethought on fog layer [1]. For instances, the first challenge is how to deal
with nodes faults and updates. A failed node cannot be capable to function its role while a
rogue node could pretend to be legitimate to exchange and collect the data generated by other
Internet of Things (IoT) devices for malicious purposes. The second is security and privacy
concerns. At first glance, security and privacy are more affirmed in fog than in pure cloud
world owing to everything is not transmitted out to cloud yet before the pre-process done by
fog layer, however, how do we confirm the required pre-processes are all applied? Any
existing man-in-the-middle threats? If we turn around heads to the other end － sensors,
actuators and devices of the thing layer, they are usually quite severely resources-constrained
with intermittently connectivity. Many existing securing protocols are built on time
synchronization over wireless packet transmissions or resource-intensive authentication
processing and they are not efficiently suitable for resource-constrained IoT devices, so it is
rather consolidating data centrally than letting them connect to internet directly, for safety’s
sake.

The above requires more intelligent abilities to take local decisions by fog layer to bridge

the cloud and the thing, that is the reason why we consider software-defined capabilities [2] of
fog layer is worth further research in terms of the key accelerator to widespread IoT Industry
4.0.

5656 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

Fig. 1. Fog computing hierarchical and interfaces for industrial IoT

2. Challenges and Related Work
Diving into a number of local decisions in fog layer, there are a lot of challenges ahead, for
example, stringent latency requirements, resource-constrained devices, etc. Among them, we
are interested in two challenges － handling nodes update [3][4] and promising true privacy
for sensitive data all over the fog layer. Due to each topic has its respective existing
technologies, along with debates and disputes, the standard is not unanimous yet, in the fog
computing world.

2.1. Nodes Update Handling in Fog Layer
Whenever a node to be updated, it usually satisfies one of the conditions: failed, obsolete, or
compromised, no matter which, the fog layer needs to identify application exception or
hardware failure and proceeds the recovery when it meets any. The major challenge is to keep
the IoT system as a whole remains stable and trusted during individual node update even if it
encounters certain conditions without pre-warning. The impacts of each conditions as listed in
Table 1.

Table 1. Timing and Impacts of Fog Node Update

Update Condition Triggered by Impact

Failed Hardware/ Software bug or
exception

Unresponsive/
Data unavailable/ Related operations

interrupted

Obsolete System administrator (Policy or
scheduled update)

Scheduled data unavailable

Compromised Malicious node or replacement Privacy or data lost/ Behavior changed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5657

For the first two conditions, the affected security level is usually harmless, except
influencing data accuracy or requiring re-processing by applying queue-centric treatments.
What matters is the consequences of the last condition would bring: the malicious node hides
somewhere, leaks the data sometime, disorders the orchestration and even jeopardizes the
surrounding nodes or devices on the IoT network.

To address the above issue, a widely rolled out technology called Trusted Computing (TC)
which is developed and promoted by the Trusted Computing Group. Major chip
manufacturers, hardware manufacturers and operating system manufacturers forged an
alliance to build in a Trusted Platform Module (TPM) with core root of trust and cryptographic
modules to their products to assure the boot loader process is tamper-resistant. The scenario of
TPM-integrated slightly differs for different manufacturers.

For example, “Verified boot” is used in Chrome/Android and other open source operating
systems; “Secure boot” is used in Windows operating system. The technology is quite
effective in protecting the system update/initialization from executing any unattested
behaviors, however, it also leads to the criticism of putting too much power and control into
the hands of whom designing the systems and software and finally causes anti-competitive
effect, enforcing digital rights management policies and the loss of anonymity and privacy.
TPM equipped computer or node is identity-unique attested and internet-availability required
when processing updates, so it is possible for vendors and others who possess the ability to
abuse the attestation feature to collect high sensitive data [5], no matter the user is unaware of
or willing to. The issue is especially prominent for fog computing adopters － handling update
on the premise of promising true privacy.

2.2. Anti-leak of Privacy Data
In a more privacy-sensitive environment the dissemination scope of sensors or devices are
merely allowed to the gateways or aggregators instead of directly connecting to the internet.
This kind of environment greatly reduces the possibility of collusion attacks, since all devices
or sensors are pre-registered, even equipped with widely used techniques, say Iterative
Filtering (IF) algorithms or reputation scoring systems [6]. When the collected data arrives the
TC-enabled gateways or aggregators, as stated in section 2.1, raises new privacy leakage
concerns, which may be sent to the systems or software producer imperceptible, since the
internet is available. What is behind could be a machine-learning or a big data mining
algorithm to perform GPS tracking and certain data fusion. Somehow, their combination,
however, may uncover new meanings. Additional remote attestation could also be forced by
the government’s “lawful access” proposal [7]. The unwitting leakage is possibly collected by
manufactures and regulatory supervisors, not to mention the running malicious spywares or
jamming attacks proactively.

Imagine a scenario that is common to industrial IoT field, thousands or more sensors and
devices feedback data with filtered and processed, to dozens of corresponding center nodes.
After that, the data is transmitted to a cloud data center service provider for further processing
and analysis through a couple of internet-facing gateways. There are couples of problems
since here: 1. The filtering and masked data were processed according to privacy rules in the
local area center nodes, however, the traditional gateways just play as a network gatekeeper
role to allow or block the outbound data to the pre-defined cloud destination. The masked or

5658 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

filtered data does not know where they will be sent to, and the gatekeeper does not know what
data should be masked or filtered neither. This mismatch is usually the weak point that gives
the privacy leakage an opportunity to the people with bad intentions by collecting data secretly
and passing it out intermittently through the unwitting gateway before applying
Privacy-Enhancing Technologies (PETs). 2. It is possible that the gateway itself sends out
certain data to somewhere we don’t know stealthily once detecting internet availability,
especially when the gateway/server is uniquely identifiable for its remote manufacturer. 3. It is
possible that the cloud data center service provider can acquire certain statistical meanings by
linking the filtered data uploaded and its tenant user’s source enterprise IPs or locations.

To overcome these concerns, it is of utmost importance to have an independent PETs

mindset apart from IoT gateways to require rigorous oversight and security designed-in from
the system outset. The PETs mechanism should be relatively independent and stands out
separately from internet-facing gateways/nodes to guarantee absolutely control over any
outbound data packet － even under the hypothesis that hardware gateways/nodes
manufactures had embedded a certain data transmission to bypass OS level surveillance
stealthily.

2.3. Zero Knowledge Proof System
A zero-kowlege proof system is to prove a statement is true without leaking extra information
of statement itself. Usually there are two roles in the system, a prover and a verifier. A prover
needs to convince some statement is true, for example, say x belongs to a language L is the
statement we want to prove. Let P as prover, V as verifier and S as simulator. For the verifier
who does not know x value if for any probabilistic polymnomial time verifier V there exists a
simulator S, we can convert the zero-knowledge relationship in an equation such that

 ∀x ∈ L, z ∈ {0,1}*, ViewV [P(x) ↔ V(x,z)] = S(x,z) (1)

where ViewV [P(x) ↔V(x,z)] is the interactions between P(x) and V(x,z). The existence of a
simulator implies that if x∈L, then V cannot learn more than the fact that x∈L, even the x
value [8].

Inspired by zero-knowledge proof, we design a scheme between the PETs processing nodes
and the corresponding gateways with respect to a zero-knowledge proof system [9], which can
greatly control the above threats. If we draw an analogy between PETs processing nodes and
outbound fog gateways as a verifier and a prover of a zero-knowledge proof system, a
malicious gateway cannot learn any sensitive statement from a source PETs processing node
in a polynomial time; a malicious PETs processing node cannot convince a gateway to
transmit to cloud for further processing if the privacy data has not been processed by PETs
rules, such as k-Anonymity [10], l-Diversity [11] or t-Closeness [12]. The authenticating
process needs the least amount of interactions between the prover and the verifier by means of
the scheme that integrates the non-interactive zero knowledge (NIZK) proof [13] [14] to
further decrease the validating burden. Many researches on NIZK have been proposed to
improve its efficiency, for example, from the earlier work, such as the Fiat-Shamir heuristic
[14] where the cryptographic hash function is introduced as a random function; recent works
such as Lindell’s transform of non-programmable random oracle (NPRO) model [15] that
needs no random oracles to achieve efficient NIZK arguments in the common reference string

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5659

(CRS) model, and Ciampi’s work [16] which combines each own’s advantage of both without
a random oracle. We want to defer the discussion on more efficiency improvement of NIZK
and hold the controversy of which model (requiring any random oracle or not) is better, instead,
put the focus on how to transform and validate PETs rules to zero-knowledge system nicely as
an independent software-defined gateway (SDG) scheme which is applicable in the fog layer.
Before diving into the scheme details, consider a background scenario as follow:

 “De-Identification” is one typical request of PETs approaches to prevent from leaking
sensitive data. One of “De-Identification” techniques is through fictitious data provided by
“Data Masking”. Some elaborations on the assumptions and the terms are needed here. For
example, we wish to prove that the original data as shown in Table 2 has been masked before
sending out to cloud for further analysis.

Table 2. Examples of Data Masking in PETs

Algorithm Original Data De-Identified Data Remark

Substitution Stacy Martin

123-45-6789

S**** Ma****

123-45-****

Replace the last 4 characters
of each word by *

Shuffling A123456789

13,200,423

A132547698

13,024,032

Swap position of each 2
characters-pair after the

second character

Number
and Data
Variance

A123456789 +
11111111

A134567890 Modifies each number or
value in a column to some

random percentage of its real
value

Generalization
and Supression

Age Name
22 Yadale
25 Joan
33 Sunny
38 Kenny

Age Name
20 < Age 30 *
20 < Age 30 *
30 < Age 40 *
30 < Age 40 *

The combination of
generalization and supression

of sensitive columns

There are two types of statements can be inferred from this scenario:
 The statement of the fact: “The original data has been marked before sending out to

cloud.”
 The statement of the knowledge regarding to the fact: “I know the above

“De-Identified Data” was indeed the masked result before sending out to cloud,” even
if I don’t know the original data exactly.

In the column of “De-Identified Data”, whether its original data being processed or not, it is

easy to prove to the naked eye for the Substitution algorithm, but imperceptible for the
Shuffling or the Number and Data Variance algorithm. However, this implies a significant
enough difference between the two types of statements: it is possible to prove the first
statement true even if we don’t know the full original data. The second statement is known as
a “Proof of Knowledge" which is the core logic in our scheme.

5660 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

3. Proposed Scheme
Followed by Table 2, we pick up the algorithm “Shuffling” and its data as an example to
illustrate how the proposed scheme termed as Fog Computing Zero-Knowledge Gateway
(FogComZKG) conduct the validation process of transmission request based on
zero-knowledge proof. FogComZKG includes three main parts of algorithms, they are named
as PETsMasker, DIGESTER in prover’s side and ZKVerifier in verifier’s side, respectively.
Begin with the assumption that the rule of PETs needs to be transformed into a very specific
format and to be signed by one of the keys in the key pair of prime number and a generator of
a cyclic group [17] of prime-order format in Claus-Peter Schnorr’s signature theory [18].

A high-level procedure is presented in Fig. 2, inspired by zero-knowledge proof, let PETs
processing node be a prover for its sending data content and let ZKVerifier be a verifier agent
for outbound request approver of internet gateway.

Fig. 2. High level sequence flow chart of FogComZKG

Step 1: The existing commodity gateways are based on hardware device or
software-defined module. The enrollment is required to have proxy permission to generate
effective operating configurations or commands (allow/deny outbound network traffic on
specific interfaces for specific request) to internet-facing gateway.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5661

Step 2: PETs processing node as a prover must be enrolled to a verifier and let the verifier

know what the applied PETs plan is (Only disclose the masker type later in Step 4 instead of
the whole masker details.) for each data message when it requests for transmission. We called
it PETsMasker as shown in Fig. 3 which is a collection of any desired PETs algorithms,
shuffling here is just one of algorithm examples.

Fig. 3. Prover’s PETs Algorithm Sample: Shuffling

Step 3: ZKVerifier as a verifier who needs to choose some value as its challenge based on its
random oracle mechanism (as opposed to the value from the prover) and then outputs a
specific initial message for Step 2. Prover generates his owned keypair for later signature.

Step 4: Some random value corelated to the sensitive data is included as an initiative of
keypair. Prover hashes the original data and the masked one respectively and signs the
combination of each as a message digest with prover’s private key. The signed digest is not
merely a proof of the knowledge of the sensitive data but also a signature by someone who
really owns the sensitive data. A novel trick of DIGESTER differs from the known digital
signature: the digest is an aggregation that look like a single digest referring to the original data
and the masked one, respectively. The prover also needs to specify which part of the
aggregated message in the digest is for the masked data explicitly. DIGESTER combines the
specified PETsMasker algorithm as shown in Fig. 4 and is ready as the publication for next
step.

5662 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

Fig. 4. Prover’s Digest Algorithm with the Chosen PETs Type

Step 5: Prover publishes the masked data along with the aggregated message digest in a

bundle to verifier to ask for outbound permission when it needs to transmit the data to internet
cloud data center. However, a prover has more than one possibility for the provided
publication.

Publication 1:

Nonsense data + Message digest
or

Any data without Message digest

Publication 2:
Original data + Message digest

Publication 3:

Masked data + Message digest

Step 6: Verifier’s algorithm is the crucial gatekeeper before reaching out to the real
internet-facing gateway. As presented in Fig. 5, it decrypts the ciphered input with prover’s
public key and deconstructs it as declared data, digital signature and PETs type. Verifier then
extracts the masked part in the digital signature and hashes the declared data sm again, if they
are identical which proves the data integrity and its valid source (rules out the possibility of
Publication 1). The first-round traditional verification implies the capability in avoiding from
data leakage of any unauthorized and malicious transmission request. It also applicable in
solving fog nodes update challenge of whether the declared update executable is from its
authentic manufacturer once the updating request convinced the verifier herein before
performing installation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5663

Owing to there are two more unsure publications that a prover can provide, we need further
verifications to confirm either the declared data is the one masked (as stated in Publication 3)
or the one unmasked (as stated in Publication 2). The challenge is the original sensitive data
pm should not only be zero-knowledge to verifier but also prover-owned provable.
FogComZKG calls back the same prover’s PETs algorithm with inputting the declared secret
message in a novel way and decrypts the returning value, if it happens to be the digest of the
secret message, that implies the declared secret is not really as secret as it claimed, because the
digest of the re-masked real secret should not be the same as the digest of the masked sensitive
data; otherwise, the declared secret message is indeed a secret. Prover can only convince the
verifier only when he is an honest prover, in the meantime, verifier stays zero-knowledge of
the secret data during the entire process.

Fig. 5. Verifier’s Algorithm: ZKVerifier

Step 7: Verifier acts regarding to the verified result: FogComZKG filters and composes

corresponding commands according to the request, then forwards the masked data traffic to
internet gateway once being convinced, or just denies the request.

Command example: The only packets allowed to the interface must be from source IP of
FogNode01 (172.16.2.10). The extended access list named FogNode01-batch01 filters
incoming packets. The access list permits http packets from the source 172.16.2.10 to a certain
public cloud datacenter network 40.79.160.0.0 and denies all other TCP packets. The access
list denies all other IP packets and performs logging of packets passed or denied by that entry.

ip access-list standard Internet-filter
permit 172.16.2.10
ip access-list extended FogNode01-batch01

5664 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

permit tcp 172.16.2.10 40.79.160.0.0 0.0.255.255 eq http
deny tcp any any
deny ip any any

4. Evaluation of FogComZKG Scheme
We implemented the main algorithms of prover’s and verifier’s steps in section 3 to examine
its effect. The work is designed for the domian such as industrial IoT manufacturers or
financial services who on the one hand collect information centrally from distributed devices
or registered clients but require the second time information transmission or exchange to cloud
service provider for further analysis. The security threats may happen on hardware network
device itself stealthily, attack by sniffer or by mistake. In this section, we design a case study
to simulate the sniffing attack against the information leak during the re-distribution process.
The case simulates a TPM-based L3 switch eavesdropping certain privacy data without
properly masked or encrypted and forwarding the data passing through it to its manufactor (the
manufactor’s IP is usually legal in the allowed list for checking updates purpose) along with
the allowed service destination (legal in the access control list), we call it “privacy smuggling”.
The forwarding transmission is hard to be detected owing to the fact of incidental
transimission mixing up with normal traffic. We then launch a sniffing attack to spy upon
privacy data sent by a fog node netwrok and present how our work effectively protect the
privacy with shuffling algorithm in Fig. 6 and Fig. 7.

For instance, the sensitive data is 0930123456, if not being shuffled, it can be sniffed just as
its original content in general case.

Fig. 6. Sensitive Data in General Case

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5665

The original sensitive data is 0930123456 and being shuffled as 0903214365 forcibly by

FogComZKG pre-registered rule as long as it needs to transfer to internet. Although it can be
sniffed, the content is shuffled. Pre-registered rule can be changed depends on requirement.

Fig. 7. Sensitive Data After Processed by FogComZKG

In addition to security, efficiency is one essential factor to determine feasibility. We also

examine the performance when using different hash functions in producing digital signatures
regarding to different message sizes. In the experiment result as shown in Table 3, the process
time of the shuffling operation was excluded, owning to the processing time of various PETs
rules differs and users always have freedoms to apply different PETs rule within our scheme.
The examination ran on a server with a 2.6 GHz Intel® i7 6600U 4 processors, 16 GB RAM
based on Microsoft Windows 10 Enterprise Build 16299. The result is not to our surprise,
MD5 is the fastest, the SHA families are approximate in order of their complexity. In our
scheme, during the interaction it requires at least three times hashes, there are two times of
hashes from prover and one time of hash from verifier. It is a limit so far as an interactive
zero-knowledge protocol in our scheme.

5666 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

Table 3. FogComZKG Performance Regarding to Different Hash Types and Message Sizes
Process Time (ms)
of FogComZKG Prover& Verifier
Operation
(Excluded the PETs rule part
process time)

512 KB 1 MB 10 MB 256 MB 512 MB 1024 MB

Used Hash Functions Hashed Sizes

MD5 33 33 34 46 51 137 32 chars

SHA-1 40 41 42 52 54 145 40 chars

SHA-256 58 60 63 76 233 912 64 chars

SHA-512 59 62 65 88 604 2213 128 chars

5. Conclusion
In this paper, we propose a software-defined gateway scheme to help define a fog layer
component that we consider a novel candidate of the evolving fog computing standards,
especially for the scenarios of quite sensitive message protection and internet-controlled, for
example, industrial IoT or banking. The solution provides a capability of partial masking,
pluses the privacy enhancement technologies in its design time, instead of encrypting sensitive
data altogether recklessly since it obstructs further cloud application, the scheme enforces the
protection policy firmly applied on message before leaving fog layer for cloud. The scheme
also introduces a novel approach to stay neutral and zero-knowledge to the sensitive data and
workable without internet connectivity. It greatly reduces the doubt of data leakage of itself
and removes the potential leakage possibility by other devices, such as TPM-enabled servers,
firewall or gateways.

6. Future Work
In future work, we will extend our zero-knowledge protocol from current interactive way to
non-interactive way to avoid increasing hashing overhead as the number of the messages
increases. Artificial intelligence technologies will be planned and leveraged to extend the
protecting coverage of the scheme. We may also validate some part of the scheme, such as
hash functions, with Field Programmable Gate Array (FPGA) implementations [19][20][21]
or blocked RAM to further enhance its efficiency.

References
[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu, “Edge Computing: Vision and

Challenges,” IEEE INTERNET OF THINGS JOURNAL, vol. 3, no. 5, pp-637-646, Oct. 2016.
Article (CrossRef Link)

[2] Stefan Nastic, Hong-Linh Truong, and Schahram Dustdar, “SDG-Pro: a programming framework
for software-defined IoT cloud gateways,” Journal of Internet Services and Applications, 6:21, Oct.
2015. Article (CrossRef Link)

[3] Eren Balevi, and Richard D. Gitlin, “Optimizing the Number of Fog Nodes for Cloud-Fog-Thing
Networks,” Networking and Internet Architecture, 4 Jan. 2018. Article (CrossRef Link)

https://dx.doi.org/10.1109/JIOT.2016.2579198
https://dx.doi.org/10.1186/s13174-015-0037-1
https://dx.doi.org/10.1109/ACCESS.2018.2808598

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018 5667

[4] M. Weißbach, N. Taing, M. Wutzler, T. Springer, A. Schill and S. Clarke, "Decentralized
coordination of dynamic software updates in the Internet of Things," in Proc. of 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT), Reston, VA, pp. 171-176, 2016.
Article (CrossRef Link)

[5] Trusted Computing Article (CrossRef Link)
[6] E. Choudhari, K. D.Bodhe, S. M. Mundada, “Secure data aggregation in WSN using iterative

filtering algorithm,” in Proc. of 2017 International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA), Bangalore, pp. 1-5, 2017. Article (CrossRef Link)

[7] G. Hariton, H. Palihapitya, "Should Consumers Trust Trusted Computing?," 2005 Public Interest
Advocacy Centre (PIAC).

[8] Goldwasser, S.; Micali, S.; Rackoff, C., "The knowledge complexity of interactive proof systems,"
(PDF), SIAM Journal on Computing, Philadelphia: Society for Industrial and Applied
Mathematics, 18 (1): 186-20, 1989. Article (CrossRef Link)

[9] Shafi Goldwasser, Silvio Micali, and Charles Rackoff, “The Knowledge Complexity of Interactive
Proof-Systems,” in Proc. of Proceedings of the seventeenth annual ACM symposium on Theory of
computing (STOC 1985), pp. 291-304, 1985. Article (CrossRef Link)

[10] L. Sweeney. “k-Anonymity: a model for protecting privacy,” International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10 (5), 557-570. Paper: 14, 2002.
Article (CrossRef Link)

[11] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, “l-Diversity: Privacy Beyond
k-Anonymity,” in Proc. of 22nd International Conference on Data Engineering (ICDE'06),
Atlanta, GA, USA, pp. 24-24, 2006. Article (CrossRef Link)

[12] N. Li, T. Li and S. Venkatasubramanian, "t-Closeness: Privacy Beyond k-Anonymity and
l-Diversity," in Proc. of 2007 IEEE 23rd International Conference on Data Engineering, Istanbul,
pp. 106-115, 2007. Article (CrossRef Link)

[13] Manuel Blum, Paul Feldman, and Silvio Micali, “Non-Interactive Zero-Knowledge and Its
Applications,” in Proc. of Proceedings of the twentieth annual ACM symposium on Theory of
computing (STOC 1988), pp. 103-112, 1988. Article (CrossRef Link)

[14] Amos Fiat and Adi Shamir, “How to Prove Yourself: Practical Solutions to Identification and
Signature Problems,” in Proc. of CRYPTO 1986, pp. 186-194, 1986. Article (CrossRef Link)

[15] Yehuda Lindell, "An Efficient Transform from Sigma Protocols to NIZK with a CRS and
Non-Programmable Random Oracle," TCC 2015: Theory of Cryptography, pp. 93-109, 2015.
Article (CrossRef Link)

[16] Ciampi M., Persiano G., Siniscalchi L., Visconti I, “A Transform for NIZK Almost as Efficient
and General as the Fiat-Shamir Transform Without Programmable Random Oracles,” Theory of
Cryptography. TCC 2016. Lecture Notes in Computer Science, vol 9563. Springer, Berlin,
Heidelberg, 2016. Article (CrossRef Link)

[17] Hazewinkel, Michiel, ed., "Cyclic group,” Encyclopedia of Mathematics, [1994] Springer
Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, 2001.
Article (CrossRef Link)

[18] C.P. Schnorr, "Efficient identification and signatures for smart cards,” in Proc. of G. Brassard, ed.
Advances in Cryptology—Crypto '89, 239-252, Springer-Verlag. Lecture Notes in Computer
Science, nr 435, 1990. Article (CrossRef Link)

[19] F. Kahri, H. Mestiri, B. Bouallegue and M. Machhout, "Efficient FPGA hardware implementation
of secure hash function SHA-256/Blake-256," in Proc. of 2015 IEEE 12th International
Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, pp. 1-5, 2015.
Article (CrossRef Link)

[20] Shi Z., Ma C., Cote J., Wang B., “Hardware Implementation of Hash Functions. In: Tehranipoor
M., Wang C. (eds) Introduction to Hardware Security and Trust,” Springer, New York, NY, 2012.
Article (CrossRef Link)

https://dx.doi.org/10.1109/WF-IoT.2016.7845450
https://en.wikipedia.org/wiki/Trusted_Computing
https://dx.doi.org/10.1109/ICIMIA.2017.7975603
https://dx.doi.org/10.1137/0218012
https://dx.doi.org/10.1145/22145.22178
https://dx.doi.org/10.1142/S0218488502001648
https://dx.doi.org/10.1109/ICDE.2006.1
https://dx.doi.org/10.1109/ICDE.2007.367856
https://dx.doi.org/10.1145/62212.62222
https://dx.doi.org/10.1007/3-540-47721-7_12
https://dx.doi.org/10.1007/978-3-662-46494-6_5
https://dx.doi.org/10.1007/978-3-662-49099-0_4
https://dx.doi.org/10.1007/978-94-009-5991-0
https://dx.doi.org/10.1007/0-387-34805-0_22
https://dx.doi.org/10.1109/SSD.2015.7348105
https://dx.doi.org/10.1007/978-1-4419-8080-9_2

5668 Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing

[21] Latif K., Tariq M., Aziz A., Mahboob A. (2012) Efficient Hardware Implementation of Secure
Hash Algorithm (SHA-3) Finalist - Skein. In: Sambath S., Zhu E. (eds) Frontiers in Computer
Education. Advances in Intelligent and Soft Computing, vol 133. Springer, Berlin, Heidelberg,
2012. Article (CrossRef Link)

Te-Yuan Lin is a PhD candidate in Computer Science and Information Engineering of
National Taiwan University, Taipei, Taiwan, R.O.C. Before that, he earned his master’s
degree in computer information system from Baruch College, the City University of New
York. His academic research explores big data and databases efficiency, cloud computing,
cryptography and security. He regularly speaks on technical forums and conferences of best
practices about cloud computing and security. He served as a technical consultant for
Microsoft for several years. In his recent research, he pays more focus on the secure
interactions of Internet of Things, fog computing and cloud computing applications.

Chiou-Shann Fuh received the MS degree in computer science from the Pennsylvania
State University, University Park, PA, in 1987, and the PhD degree in computer science from
Harvard University, Cambridge, MA, in 1992. He was with AT&T Bell Laboratories and
engaged in performance monitoring of switching networks from 1992 to 1993. He is a full
professor in Department of Computer Science and Information Engineering, National
Taiwan University, Taipei. His current research interests include digital image processing,
computer vision, pattern recognition, mathematical morphology, and their applications to
defect inspection, industrial automation, digital video camcorder, surveillance camera, and
camera module such as color interpolation, auto exposure, auto focus, and color
management.

https://dx.doi.org/10.1007/978-3-642-27552-4_122

