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Abstract 
 

Driven by security and real-time demands of Internet of Things (IoT), the timing of fog 
computing and edge computing have gradually come into place. Gateways bear more nearby 
computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in 
between local devices and the remote cloud. In fog computing, the edge broker requires 
X-aware capabilities that combines software programmability, stream processing, hardware 
optimization and various connectivity to deal with such as security, data abstraction, network 
latency, service classification and workload allocation strategy. The prosperous of Field 
Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further 
landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog 
computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens 
data protection and resilience merits designed for industrial internet of things or highly privacy 
concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing 
commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies 
rules into provable statements without knowing original sensitive data and guarantees privacy 
rules applied to the sensitive data before being propagated while preventing potential leakage 
threats. Some logical functions can be offloaded to any programmable micro-controller 
embedded to achieve higher computing efficiency. 
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1. Introduction 

The terms fog computing and edge computing are used interchangeably often in the industry, 
yet they have differences in emphasized nature. Both are pushing intelligence and processing 
capabilities to where the data is collected to minimize latency, however, fog computing pays 
more attention on applications of fog nodes and routes filtered data to the optimal place for 
analysis while sustaining the data privacy inside the protected network. Fog nodes can be 
equipped with quite powerful computing, scalable memory or storage capacity and 
inter-connected in a mesh network topology to form as a fog layer infrastructure. The fog layer 
plays as a bridge as illustrated in Fig. 1[1][2], it is closer to data source than cloud and hence to 
achieve lower transmission latency, to strengthen managed capabilities and to orchestrate the 
heterogeneous application and devices in between the cloud layer and the thing layer. For 
industrial scenarios, realizing resilient connectivity and intelligent computing possibility are 
just right characteristics in favor for fog computing yet hard to gain from public cloud 
platform. 
 

Though the concept of fog computing is emerging prosperously, more detail of applied 
problems need to be rethought on fog layer [1]. For instances, the first challenge is how to deal 
with nodes faults and updates. A failed node cannot be capable to function its role while a 
rogue node could pretend to be legitimate to exchange and collect the data generated by other 
Internet of Things (IoT) devices for malicious purposes. The second is security and privacy 
concerns. At first glance, security and privacy are more affirmed in fog than in pure cloud 
world owing to everything is not transmitted out to cloud yet before the pre-process done by 
fog layer, however, how do we confirm the required pre-processes are all applied? Any 
existing man-in-the-middle threats? If we turn around heads to the other end － sensors, 
actuators and devices of the thing layer, they are usually quite severely resources-constrained 
with intermittently connectivity. Many existing securing protocols are built on time 
synchronization over wireless packet transmissions or resource-intensive authentication 
processing and they are not efficiently suitable for resource-constrained IoT devices, so it is 
rather consolidating data centrally than letting them connect to internet directly, for safety’s 
sake. 

 
The above requires more intelligent abilities to take local decisions by fog layer to bridge 

the cloud and the thing, that is the reason why we consider software-defined capabilities [2] of 
fog layer is worth further research in terms of the key accelerator to widespread IoT Industry 
4.0. 
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Fig. 1. Fog computing hierarchical and interfaces for industrial IoT 

2. Challenges and Related Work 
Diving into a number of local decisions in fog layer, there are a lot of challenges ahead, for 
example, stringent latency requirements, resource-constrained devices, etc. Among them, we 
are interested in two challenges － handling nodes update [3][4] and promising true privacy 
for sensitive data all over the fog layer. Due to each topic has its respective existing 
technologies, along with debates and disputes, the standard is not unanimous yet, in the fog 
computing world. 

2.1. Nodes Update Handling in Fog Layer 
Whenever a node to be updated, it usually satisfies one of the conditions: failed, obsolete, or 
compromised, no matter which, the fog layer needs to identify application exception or 
hardware failure and proceeds the recovery when it meets any. The major challenge is to keep 
the IoT system as a whole remains stable and trusted during individual node update even if it 
encounters certain conditions without pre-warning. The impacts of each conditions as listed in 
Table 1. 

 
Table 1. Timing and Impacts of Fog Node Update 

Update Condition Triggered by Impact 

Failed Hardware/ Software bug or 
exception 

Unresponsive/ 
Data unavailable/ Related operations 

interrupted 

Obsolete System administrator (Policy or 
scheduled update) 

Scheduled data unavailable 

Compromised Malicious node or replacement Privacy or data lost/ Behavior changed 
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For the first two conditions, the affected security level is usually harmless, except 
influencing data accuracy or requiring re-processing by applying queue-centric treatments. 
What matters is the consequences of the last condition would bring: the malicious node hides 
somewhere, leaks the data sometime, disorders the orchestration and even jeopardizes the 
surrounding nodes or devices on the IoT network. 
 

To address the above issue, a widely rolled out technology called Trusted Computing (TC) 
which is developed and promoted by the Trusted Computing Group. Major chip 
manufacturers, hardware manufacturers and operating system manufacturers forged an 
alliance to build in a Trusted Platform Module (TPM) with core root of trust and cryptographic 
modules to their products to assure the boot loader process is tamper-resistant. The scenario of 
TPM-integrated slightly differs for different manufacturers.  
 

For example, “Verified boot” is used in Chrome/Android and other open source operating 
systems; “Secure boot” is used in Windows operating system. The technology is quite 
effective in protecting the system update/initialization from executing any unattested 
behaviors, however, it also leads to the criticism of putting too much power and control into 
the hands of whom designing the systems and software and finally causes anti-competitive 
effect, enforcing digital rights management policies and the loss of anonymity and privacy. 
TPM equipped computer or node is identity-unique attested and internet-availability required 
when processing updates, so it is possible for vendors and others who possess the ability to 
abuse the attestation feature to collect high sensitive data [5], no matter the user is unaware of 
or willing to. The issue is especially prominent for fog computing adopters － handling update 
on the premise of promising true privacy. 

2.2. Anti-leak of Privacy Data 
In a more privacy-sensitive environment the dissemination scope of sensors or devices are 
merely allowed to the gateways or aggregators instead of directly connecting to the internet. 
This kind of environment greatly reduces the possibility of collusion attacks, since all devices 
or sensors are pre-registered, even equipped with widely used techniques, say Iterative 
Filtering (IF) algorithms or reputation scoring systems [6]. When the collected data arrives the 
TC-enabled gateways or aggregators, as stated in section 2.1, raises new privacy leakage 
concerns, which may be sent to the systems or software producer imperceptible, since the 
internet is available. What is behind could be a machine-learning or a big data mining 
algorithm to perform GPS tracking and certain data fusion.  Somehow, their combination, 
however, may uncover new meanings. Additional remote attestation could also be forced by 
the government’s “lawful access” proposal [7]. The unwitting leakage is possibly collected by 
manufactures and regulatory supervisors, not to mention the running malicious spywares or 
jamming attacks proactively. 
 

Imagine a scenario that is common to industrial IoT field, thousands or more sensors and 
devices feedback data with filtered and processed, to dozens of corresponding center nodes. 
After that, the data is transmitted to a cloud data center service provider for further processing 
and analysis through a couple of internet-facing gateways. There are couples of problems 
since here: 1. The filtering and masked data were processed according to privacy rules in the 
local area center nodes, however, the traditional gateways just play as a network gatekeeper 
role to allow or block the outbound data to the pre-defined cloud destination. The masked or 
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filtered data does not know where they will be sent to, and the gatekeeper does not know what 
data should be masked or filtered neither. This mismatch is usually the weak point that gives 
the privacy leakage an opportunity to the people with bad intentions by collecting data secretly 
and passing it out intermittently through the unwitting gateway before applying 
Privacy-Enhancing Technologies (PETs). 2. It is possible that the gateway itself sends out 
certain data to somewhere we don’t know stealthily once detecting internet availability, 
especially when the gateway/server is uniquely identifiable for its remote manufacturer. 3. It is 
possible that the cloud data center service provider can acquire certain statistical meanings by 
linking the filtered data uploaded and its tenant user’s source enterprise IPs or locations. 

 
To overcome these concerns, it is of utmost importance to have an independent PETs 

mindset apart from IoT gateways to require rigorous oversight and security designed-in from 
the system outset. The PETs mechanism should be relatively independent and stands out 
separately from internet-facing gateways/nodes to guarantee absolutely control over any 
outbound data packet －  even under the hypothesis that hardware gateways/nodes 
manufactures had embedded a certain data transmission to bypass OS level surveillance 
stealthily. 

2.3. Zero Knowledge Proof System 
A zero-kowlege proof system is to prove a statement is true without leaking extra information 
of statement itself. Usually there are two roles in the system, a prover and a verifier. A prover 
needs to convince some statement is true, for example, say x belongs to a language L is the 
statement we want to prove.  Let P as prover, V as verifier and S as simulator. For the verifier 
who does not know x value if for any probabilistic polymnomial time verifier V there exists a 
simulator S, we can convert the zero-knowledge relationship in an equation such that  
 

              ∀x ∈ L, z ∈ {0,1}*, ViewV [ P(x) ↔ V(x,z) ] = S(x,z)                               (1) 
 
where ViewV [ P(x) ↔V(x,z) ] is the interactions between P(x) and V(x,z). The existence of a 
simulator implies that if x∈L, then V cannot learn more than the fact that x∈L, even the x 
value [8]. 
 

Inspired by zero-knowledge proof, we design a scheme between the PETs processing nodes 
and the corresponding gateways with respect to a zero-knowledge proof system [9], which can 
greatly control the above threats. If we draw an analogy between PETs processing nodes and 
outbound fog gateways as a verifier and a prover of a zero-knowledge proof system, a 
malicious gateway cannot learn any sensitive statement from a source PETs processing node 
in a polynomial time; a malicious PETs processing node cannot convince a gateway to 
transmit to cloud for further processing if the privacy data has not been processed by PETs 
rules, such as k-Anonymity [10], l-Diversity [11] or t-Closeness [12]. The authenticating 
process needs the least amount of interactions between the prover and the verifier by means of 
the scheme that integrates the non-interactive zero knowledge (NIZK) proof [13] [14] to 
further decrease the validating burden. Many researches on NIZK have been proposed to 
improve its efficiency, for example, from the earlier work, such as the Fiat-Shamir heuristic 
[14] where the cryptographic hash function is introduced as a random function; recent works 
such as Lindell’s transform of non-programmable random oracle (NPRO) model [15] that 
needs no random oracles to achieve efficient NIZK arguments in the common reference string 
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(CRS) model, and Ciampi’s work [16] which combines each own’s advantage of both without 
a random oracle. We want to defer the discussion on more efficiency improvement of NIZK 
and hold the controversy of which model (requiring any random oracle or not) is better, instead, 
put the focus on how to transform and validate PETs rules to zero-knowledge system nicely as 
an independent software-defined gateway (SDG) scheme which is applicable in the fog layer. 
Before diving into the scheme details, consider a background scenario as follow: 
 

 “De-Identification” is one typical request of PETs approaches to prevent from leaking 
sensitive data. One of “De-Identification” techniques is through fictitious data provided by 
“Data Masking”. Some elaborations on the assumptions and the terms are needed here. For 
example, we wish to prove that the original data as shown in Table 2 has been masked before 
sending out to cloud for further analysis. 

 
Table 2. Examples of Data Masking in PETs 

Algorithm Original Data De-Identified Data Remark 

Substitution Stacy Martin 

123-45-6789 

S**** Ma**** 

123-45-**** 

Replace the last 4 characters 
of each word by * 

Shuffling A123456789 

13,200,423 

A132547698 

13,024,032 

Swap position of each 2 
characters-pair after the 

second character 

Number 
and Data 
Variance 

A123456789  + 
11111111 

A134567890 Modifies each number or 
value in a column to some 

random percentage of its real 
value 

Generalization 
and Supression 

Age Name 
22 Yadale 
25 Joan 
33 Sunny 
38 Kenny 

 

Age Name 
20 < Age 30 * 
20 < Age 30 * 
30 < Age 40 * 
30 < Age 40 * 

 

The combination of 
generalization and supression 

of sensitive columns 

 
There are two types of statements can be inferred from this scenario: 
 The statement of the fact: “The original data has been marked before sending out to 

cloud.”  
 The statement of the knowledge regarding to the fact: “I know the above 

“De-Identified Data” was indeed the masked result before sending out to cloud,” even 
if I don’t know the original data exactly.  

 
In the column of “De-Identified Data”, whether its original data being processed or not, it is 

easy to prove to the naked eye for the Substitution algorithm, but imperceptible for the 
Shuffling or the Number and Data Variance algorithm. However, this implies a significant 
enough difference between the two types of statements: it is possible to prove the first 
statement true even if we don’t know the full original data. The second statement is known as 
a “Proof of Knowledge" which is the core logic in our scheme. 
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3. Proposed Scheme 
Followed by Table 2, we pick up the algorithm “Shuffling” and its data as an example to 
illustrate how the proposed scheme termed as Fog Computing Zero-Knowledge Gateway 
(FogComZKG) conduct the validation process of transmission request based on 
zero-knowledge proof. FogComZKG includes three main parts of algorithms, they are named 
as PETsMasker, DIGESTER in prover’s side and ZKVerifier in verifier’s side, respectively. 
Begin with the assumption that the rule of PETs needs to be transformed into a very specific 
format and to be signed by one of the keys in the key pair of prime number and a generator of 
a cyclic group [17] of prime-order format in Claus-Peter Schnorr’s signature theory [18].  
 

A high-level procedure is presented in Fig. 2, inspired by zero-knowledge proof, let PETs 
processing node be a prover for its sending data content and let ZKVerifier be a verifier agent 
for outbound request approver of internet gateway. 
 

 
Fig. 2. High level sequence flow chart of FogComZKG 

 
 

Step 1: The existing commodity gateways are based on hardware device or 
software-defined module. The enrollment is required to have proxy permission to generate 
effective operating configurations or commands (allow/deny outbound network traffic on 
specific interfaces for specific request) to internet-facing gateway.  
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Step 2: PETs processing node as a prover must be enrolled to a verifier and let the verifier 

know what the applied PETs plan is (Only disclose the masker type later in Step 4 instead of 
the whole masker details.) for each data message when it requests for transmission. We called 
it PETsMasker as shown in Fig. 3 which is a collection of any desired PETs algorithms, 
shuffling here is just one of algorithm examples. 
 
 

 
Fig. 3. Prover’s PETs Algorithm Sample: Shuffling 

 
 

Step 3: ZKVerifier as a verifier who needs to choose some value as its challenge based on its 
random oracle mechanism (as opposed to the value from the prover) and then outputs a 
specific initial message for Step 2. Prover generates his owned keypair for later signature. 
 

Step 4: Some random value corelated to the sensitive data is included as an initiative of 
keypair. Prover hashes the original data and the masked one respectively and signs the 
combination of each as a message digest with prover’s private key. The signed digest is not 
merely a proof of the knowledge of the sensitive data but also a signature by someone who 
really owns the sensitive data. A novel trick of DIGESTER differs from the known digital 
signature: the digest is an aggregation that look like a single digest referring to the original data 
and the masked one, respectively. The prover also needs to specify which part of the 
aggregated message in the digest is for the masked data explicitly. DIGESTER combines the 
specified PETsMasker algorithm as shown in Fig. 4 and is ready as the publication for next 
step. 
 



5662                                            Te-Yuan Lin et al: Zero-Knowledge Realization of Software-Defined Gateway in Fog Computing 

 
Fig. 4. Prover’s Digest Algorithm with the Chosen PETs Type 

 
Step 5: Prover publishes the masked data along with the aggregated message digest in a 

bundle to verifier to ask for outbound permission when it needs to transmit the data to internet 
cloud data center.  However, a prover has more than one possibility for the provided 
publication. 

 
Publication 1: 

Nonsense data  +  Message digest 
or 

Any data without Message digest 
 

Publication 2: 
Original data  +  Message digest 

 
Publication 3: 

Masked data  +  Message digest 
 

Step 6: Verifier’s algorithm is the crucial gatekeeper before reaching out to the real 
internet-facing gateway. As presented in Fig. 5, it decrypts the ciphered input with prover’s 
public key and deconstructs it as declared data, digital signature and PETs type. Verifier then 
extracts the masked part in the digital signature and hashes the declared data sm again, if they 
are identical which proves the data integrity and its valid source (rules out the possibility of 
Publication 1). The first-round traditional verification implies the capability in avoiding from 
data leakage of any unauthorized and malicious transmission request. It also applicable in 
solving fog nodes update challenge of whether the declared update executable is from its 
authentic manufacturer once the updating request convinced the verifier herein before 
performing installation.  
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Owing to there are two more unsure publications that a prover can provide, we need further 
verifications to confirm either the declared data is the one masked (as stated in Publication 3) 
or the one unmasked (as stated in Publication 2). The challenge is the original sensitive data 
pm should not only be zero-knowledge to verifier but also prover-owned provable. 
FogComZKG calls back the same prover’s PETs algorithm with inputting the declared secret 
message in a novel way and decrypts the returning value, if it happens to be the digest of the 
secret message, that implies the declared secret is not really as secret as it claimed, because the 
digest of the re-masked real secret should not be the same as the digest of the masked sensitive 
data; otherwise, the declared secret message is indeed a secret. Prover can only convince the 
verifier only when he is an honest prover, in the meantime, verifier stays zero-knowledge of 
the secret data during the entire process. 
 

 
Fig. 5. Verifier’s Algorithm: ZKVerifier 

 
Step 7: Verifier acts regarding to the verified result: FogComZKG filters and composes 

corresponding commands according to the request, then forwards the masked data traffic to 
internet gateway once being convinced, or just denies the request.  
 

Command example: The only packets allowed to the interface must be from source IP of 
FogNode01 (172.16.2.10). The extended access list named FogNode01-batch01 filters 
incoming packets. The access list permits http packets from the source 172.16.2.10 to a certain 
public cloud datacenter network 40.79.160.0.0 and denies all other TCP packets. The access 
list denies all other IP packets and performs logging of packets passed or denied by that entry. 
 

ip access-list standard Internet-filter 
permit 172.16.2.10 
ip access-list extended FogNode01-batch01 
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permit tcp  172.16.2.10 40.79.160.0.0 0.0.255.255 eq http 
deny tcp any any 
deny ip any any 

4. Evaluation of FogComZKG Scheme 
We implemented the main algorithms of prover’s and verifier’s steps in section 3 to examine 
its effect. The work is designed for the domian such as industrial IoT manufacturers or 
financial services who on the one hand collect information centrally from distributed devices 
or registered clients but require the second time information transmission or exchange to cloud 
service provider for further analysis. The security threats may happen on hardware network 
device itself stealthily, attack by sniffer or by mistake.  In this section, we design a case study 
to simulate the sniffing attack against the information leak during the re-distribution process.  
The case simulates a TPM-based L3 switch eavesdropping certain privacy data without 
properly masked or encrypted and forwarding the data passing through it to its manufactor (the 
manufactor’s IP is usually legal in the allowed list for checking updates purpose) along with 
the allowed service destination (legal in the access control list), we call it “privacy smuggling”. 
The forwarding transmission is hard to be detected owing to the fact of incidental 
transimission mixing up with normal traffic. We then launch a sniffing attack to spy upon 
privacy data sent by a fog node netwrok and present how our work effectively protect the 
privacy with shuffling algorithm in Fig. 6 and Fig. 7.  
 

For instance, the sensitive data is 0930123456, if not being shuffled, it can be sniffed just as 
its original content in general case.   

 

 
Fig. 6. Sensitive Data in General Case 
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The original sensitive data is 0930123456 and being shuffled as 0903214365 forcibly by 

FogComZKG pre-registered rule as long as it needs to transfer to internet. Although it can be 
sniffed, the content is shuffled. Pre-registered rule can be changed depends on requirement.  

 

 
Fig. 7. Sensitive Data After Processed by FogComZKG 

 
 
In addition to security, efficiency is one essential factor to determine feasibility. We also 

examine the performance when using different hash functions in producing digital signatures 
regarding to different message sizes. In the experiment result as shown in Table 3, the process 
time of the shuffling operation was excluded, owning to the processing time of various PETs 
rules differs and users always have freedoms to apply different PETs rule within our scheme. 
The examination ran on a server with a 2.6 GHz Intel® i7 6600U 4 processors, 16 GB RAM 
based on Microsoft Windows 10 Enterprise Build 16299. The result is not to our surprise, 
MD5 is the fastest, the SHA families are approximate in order of their complexity. In our 
scheme, during the interaction it requires at least three times hashes, there are two times of 
hashes from prover and one time of hash from verifier. It is a limit so far as an interactive 
zero-knowledge protocol in our scheme. 
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Table 3. FogComZKG Performance Regarding to Different Hash Types and Message Sizes 
Process Time (ms) 
of FogComZKG Prover& Verifier 
Operation 
(Excluded the PETs rule part  
process time) 

512 KB 1 MB 10 MB 256 MB 512 MB 1024 MB  

Used Hash Functions       Hashed Sizes 

MD5 33 33 34 46 51 137 32 chars 

SHA-1 40 41 42 52 54 145 40 chars 

SHA-256 58 60 63 76 233 912 64 chars 

SHA-512 59 62 65 88 604 2213 128 chars 

5. Conclusion 
In this paper, we propose a software-defined gateway scheme to help define a fog layer 
component that we consider a novel candidate of the evolving fog computing standards, 
especially for the scenarios of quite sensitive message protection and internet-controlled, for 
example, industrial IoT or banking. The solution provides a capability of partial masking, 
pluses the privacy enhancement technologies in its design time, instead of encrypting sensitive 
data altogether recklessly since it obstructs further cloud application, the scheme enforces the 
protection policy firmly applied on message before leaving fog layer for cloud. The scheme 
also introduces a novel approach to stay neutral and zero-knowledge to the sensitive data and 
workable without internet connectivity. It greatly reduces the doubt of data leakage of itself 
and removes the potential leakage possibility by other devices, such as TPM-enabled servers, 
firewall or gateways.  

6. Future Work 
In future work, we will extend our zero-knowledge protocol from current interactive way to 
non-interactive way to avoid increasing hashing overhead as the number of the messages 
increases. Artificial intelligence technologies will be planned and leveraged to extend the 
protecting coverage of the scheme. We may also validate some part of the scheme, such as 
hash functions, with Field Programmable Gate Array (FPGA) implementations [19][20][21] 
or blocked RAM to further enhance its efficiency. 
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