• Title/Summary/Keyword: Edge connected components

Search Result 37, Processing Time 0.024 seconds

Implementation of Vision System for the Defect Inspection of Color Polyethylene (칼라 팔레트의 불량 검사를 위한 비전 시스템 구현)

  • 김경민;강종수;박중조;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.587-591
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the color product.(bad pallets) An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE color pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labelling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets. The labelling algorithm permits to separate all of the connected components appearing on the pallets. Labelling the connected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. Also, we suggested vision processing program in window environment. Simulations and experimental results demonstrate the performance of the proposal algorithm.

  • PDF

Skew correction of face image using eye components extraction (눈 영역 추출에 의한 얼굴 기울기 교정)

  • Yoon, Ho-Sub;Wang, Min;Min, Byung-Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.71-83
    • /
    • 1996
  • This paper describes facial component detection and skew correction algorithm for face recognition. We use a priori knowledge and models about isolated regions to detect eye location from the face image captured in natural office environments. The relations between human face components are represented by several rules. We adopt an edge detection algorithm using sobel mask and 8-connected labelling algorith using array pointers. A labeled image has many isolated components. initially, the eye size rules are used. Eye size rules are not affected much by irregular input image conditions. Eye size rules size, and limited in the ratio between gorizontal and vertical sizes. By the eye size rule, 2 ~ 16 candidate eye components can be detected. Next, candidate eye parirs are verified by the information of location and shape, and one eye pair location is decided using face models about eye and eyebrow. Once we extract eye regions, we connect the center points of the two eyes and calculate the angle between them. Then we rotate the face to compensate for the angle so that the two eyes on a horizontal line. We tested 120 input images form 40 people, and achieved 91.7% success rate using eye size rules and face model. The main reasons of the 8.3% failure are due to components adjacent to eyes such as eyebrows. To detect facial components from the failed images, we are developing a mouth region processing module.

  • PDF

Shape Analysis and Representation of Handwritten Hangul Characters (필기 한글 문자의 모양 분석과 표현)

  • Hong, Ki-Cheon;Oh, Il-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1579-1586
    • /
    • 2000
  • This paper propose a method of shape analysis and representation for the handwritten Hangul character patterns. Each of the connected components composing a Hangul character is decomposed into many parts, and skeletons are extracted from the decomposed parts. Using the results, we represent the shape of Hangul characters using the attributed graph representation. A node of the attributed graph represents a part and an edge represents their relationships and they store valuable informations of the pattern shapes.

  • PDF

Detecting and Segmenting Text from Images for a Mobile Translator System

  • Chalidabhongse, Thanarat H.;Jeeraboon, Poonsak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.875-878
    • /
    • 2004
  • Researching in text detection and segmentation has been done for a long period in the OCR area. However, there is some other area that the text detection and segmentation from images can be very useful. In this report, we first propose the design of a mobile translator system which helps non-native speakers to understand the foreign language using ubiquitous mobile network and camera mobile phones. The main focus of the paper will be the algorithm in detecting and segmenting texts embedded in the natural scenes from taken images. The image, which is captured by a camera mobile phone, is transmitted to a translator server. It is initially passed through some preprocessing processes to smooth the image as well as suppress noises. A threshold is applied to binarize the image. Afterward, an edge detection algorithm and connected component analysis are performed on the filtered image to find edges and segment the components in the image. Finally, the pre-defined layout relation constraints are utilized in order to decide which components likely to be texts in the image. A preliminary experiment was done and the system yielded a recognition rate of 94.44% on a set of 36 various natural scene images that contain texts.

  • PDF

Construction of a Network Model to Reveal Genes Related to Salt Tolerance in Chinese Cabbage (배추 염 저항성 관련 유전자의 네트워크 모델 구축)

  • Lee, Gi-Ho;Yu, Jae-Gyeong;Park, Ji-Hyun;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.684-693
    • /
    • 2014
  • Abiotic stress conditions such as cold, drought, and salinity trigger physiological and morphological changes and yield loss in plants. Hence, plants adapt to adverse environments by developing tolerance through complex regulation of genes related to various metabolic processes. This study was conducted to construct a coexpression network for multidirectional analysis of salt-stress response genes in Brassica rapa (Chinese cabbage). To construct the coexpression network, we collected KBGP-24K microarray data from the B. rapa EST and microarray database (BrEMD) and performed time-based expression analyses of B. rapa plants. The constructed coexpression network model showed 1,853 nodes, 5,740 edges, and 142 connected components (correlation coefficient > 0.85). On the basis of the significantly expressed genes in the network, we concluded that the development of salt tolerance is closely related to the activation of $Na^+$ transport by reactive oxygen species signaling and the accumulation of proline in Chinese cabbage.

Adult Image Detection Using an Intensity Filter and an Improved Hough Transform (명암 필터와 개선된 허프 변환을 이용한 성인영상 검출)

  • Jang, Seok-Woo;Kim, Sang-Hee;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.45-54
    • /
    • 2009
  • In this paper, we propose an adult images detection algorithm using a mean intensity filter and an improved 2D Hough Transform. This paper is composed of three major steps including a training step, a recognition step, and a verification step. The training step generates a mean nipple variance filter that will be used for detecting nipple candidate regions in the recognition step. To make the mean variance filter, we converts an input color image into a gray scale image and normalize it, and make an average intensity filter for nipple areas. The recognition step first extracts edge images and finds connected components, and decides nipple candidate regions by considering the ratio of width and height of a connected component. It then decides final nipple candidates by calculating the similarity between the learned nipple average intensity filter and the nipple candidate areas. Also, it detects breast lines of an input image through the improved 2D Hough transform. The verification step detects breast areas and identifies adult images by considering the relations between nipple candidate regions and locations of breast lines.

Real-time Go Recording System in Embedded Environment for Real Match (실제 대국을 위한 임베디드 환경 바둑 기보 저장 시스템)

  • Seo, WonSeoung;Jung, Keechul
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.45-54
    • /
    • 2020
  • An automated system using a embedded board is required to generate the notation input of the offline Go game. This paper integrates shape and color information of the objects on the Go game board for light-insensitive processing and reduces the computation step. This paper combined the detection of obstacles using connected components with the computation of canny edge detection and HSV-based detection. As a result, the processing time is reduced in the embedded environment so that reliable notation can be automatically stored even in real-time play environment.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

A Robust License Plate Extraction Method for Low Quality Images (저화질 영상에서 강건한 번호판 추출 방법)

  • Lee, Yong-Woo;Kim, Hyun-Soo;Kang, Woo-Yun;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • This paper proposes a robust license plate extraction method from images taken under unconstrained environments. Utilization of the color and the edge information in complementary fashion makes the proposed method deal with not only various lighting conditions, hilt blocking artifacts frequently observed in compressed images. Computational complexity is significantly reduced by applying Hough transform to estimate the skew angle, and subsequent do-skewing procedure only to the candidate regions. The true plate region is determined from the candidates under examination using clues including the aspect ratio, the number of zero crossings from vertical scan lines, and the number of connected components. The performance of the proposed method is evaluated using compressed images collected under various realistic circumstances. The experimental results show 94.9% of correct license plate extraction rate.