Detecting and Segmenting Text from Images for a Mobile Translator System

  • Chalidabhongse, Thanarat H. (Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang) ;
  • Jeeraboon, Poonsak (Faculty of Information Technology, King Mongkut's Institute of Technology Ladkrabang)
  • Published : 2004.08.25

Abstract

Researching in text detection and segmentation has been done for a long period in the OCR area. However, there is some other area that the text detection and segmentation from images can be very useful. In this report, we first propose the design of a mobile translator system which helps non-native speakers to understand the foreign language using ubiquitous mobile network and camera mobile phones. The main focus of the paper will be the algorithm in detecting and segmenting texts embedded in the natural scenes from taken images. The image, which is captured by a camera mobile phone, is transmitted to a translator server. It is initially passed through some preprocessing processes to smooth the image as well as suppress noises. A threshold is applied to binarize the image. Afterward, an edge detection algorithm and connected component analysis are performed on the filtered image to find edges and segment the components in the image. Finally, the pre-defined layout relation constraints are utilized in order to decide which components likely to be texts in the image. A preliminary experiment was done and the system yielded a recognition rate of 94.44% on a set of 36 various natural scene images that contain texts.

Keywords