• 제목/요약/키워드: Edge condition

검색결과 723건 처리시간 0.028초

유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행 (Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms)

  • 전권수;권오흥;박종현
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

고 받음각 2차원 NACA0012 에어포일 주위의 비정상 공기역학적 특성 (Unsteady Aerodynamic characteristics at High Angle of Attack around Two Dimensional NACA0012 Airfoil)

  • 유재경;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.414-419
    • /
    • 2011
  • Missile am fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 60 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure distribution, etc. are analyzed according to the angle of attack. The results at a low angle of attack are compared with other results before a stall condition. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution on the airfoil surface, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

천이영역의 희박기체 압축성 경계층 해석 (Analysis of rarefied compressible boundary layers in transition regime)

  • 최서원
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

변분법에 의한 탄성지반 해석 (Application of Variational Method to the Elastic Foundation)

  • 이승현;한진태
    • 한국산학기술학회논문지
    • /
    • 제12권10호
    • /
    • pp.4642-4647
    • /
    • 2011
  • 평면 변형률 상태에 있는 탄성지반의 해를 변분법을 적용하여 유도하여 보았다. 변분법 적용시 종방향 변위분포 함수는 선형함수를 고려하였다. 탄성지반상에 작용하는 하중조건은 집중하중과 분포하중을 고려하였는데 집중하중 작용시 탄성지반의 종방향 변위분포양상은 하중 작용점에서 멀어질수록 변위가 급격하게 감소하는 양상을 나타내었다. 등분포하중 작용시 지표면 변위는 압축층 두께에 대한 재하폭의 반의 비(B/H)값이 클수록 하중재하부분 아래에서 보다 균등하게 발생하였다. 또한 하중재하부분을 벗어난 영역에서는 B/H 값이 커질수록 하중재하 모서리 부분으로부터 짧은 거리에서 변위가 0에 수렴하였다.

Multi-Temporal Spectral Analysis of Rice Fields in South Korea Using MODIS and RapidEye Satellite Imagery

  • Kim, Hyun Ok;Yeom, Jong Min
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.407-411
    • /
    • 2012
  • Space-borne remote sensing is an effective and inexpensive way to identify crop fields and detect the crop condition. We examined the multi-temporal spectral characteristics of rice fields in South Korea to detect their phenological development and condition. These rice fields are compact, small-scale parcels of land. For the analysis, moderate resolution imaging spectroradiometer (MODIS) and RapidEye images acquired in 2011 were used. The annual spectral tendencies of different crop types could be detected using MODIS data because of its high temporal resolution, despite its relatively low spatial resolution. A comparison between MODIS and RapidEye showed that the spectral characteristics changed with the spatial resolution. The vegetation index (VI) derived from MODIS revealed more moderate values among different land-cover types than the index derived from RapidEye. Additionally, an analysis of various VIs using RapidEye satellite data showed that the VI adopting the red edge band reflected crop conditions better than the traditionally used normalized difference VI.

COG본딩 공정 중 형성된 기포가 접합 신뢰도에 미치는 영향 (The Effect of Bubble Generated during COG Bonding on the Joint Reliability)

  • 최은수;윤원수;정영훈;김보선;진송완
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.21-27
    • /
    • 2010
  • The effect of COG bonding parameters, especially the bonding temperature, on the bonding quality and reliability was investigated in this paper. We measured the bubble area formed in the ACF resin during the bonding process and tried to investigate the relationship between bubble area and bonding peel strength. 85/85 test which exposes a sample to a 85% humidity and $85^{\circ}C$ temperature condition was also carried out. The bubble area was dramatically increased under ~$10^{\circ}C$ lower than recommended bonding temperature. The bubble area formed at the edge of IC chip was larger than the other parts of IC chip. But the peel strength was not associated with the bubble area. High temperature and humid condition made the bubble area larger, but we could not find clear trend of change in the peel strength.

강도를 고려한 고스큐 프로펠러 날개의 형상 설계 (Design of Highly Skewed Propeller considering the Blade Strength)

  • 송인행;노인식;이태구
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.411-416
    • /
    • 2008
  • A strength problem of propeller blades for large container ships at astern condition has been occasionally reported due to the application of a highly skewed propeller which can reduce the hull surface fluctuation forces. A finite element analysis code for propeller blade was developed and utilized since 1985. Recently, however, further fine mesh modeling for finite element analysis is required to yield higher accuracy in the analysis. The present study shows an application of FE analysis code to the highly skewed propeller for large container ships. Results of FE analysis show that the number of FE mesh affects largely on strength, and also the calculated strength with fine mesh gives good agreements to those of other FEM codes. A method to enlarge strength near the trailing edge was introduced considering the strength criterion on the blade.

쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석 (The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image)

  • 이갑진;박기환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권9호
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

$Si_3N_4/SUS304$ 접합재의 잔류응력 및 강도평가 (Evaluation of Strength and Residual Stress in $Si_3N_4/SUS304$ Joint)

  • 박영철;오세욱;조용배
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-112
    • /
    • 1994
  • The measurement of residual stress distribution of $Si_3N_4/SUS304$ joint was performed on 23 specimens with the same joint condition using PSPC type X-ray stress measurement system and the two-dimensional elastoplastic analysis using finite element method was also attempted. As results, residual stress distribution near the interface on the ceramic side of the joint was revealed quantitatively. Residual stress on the ceramic side of the joint was turned out to be tensional near the interface, maximum along the edge, varying in accordance with the condition of the joint and variance to be most conspicuous for the residual stress normal to the interface characterized by the stress singularities. In the vicinity of the interface, the high stress concentration occurs and residual stress distributes three-dimensionally. Therefore, the measured stress distribution differed remarkably from the result of the two-dimensional finite-element analysis. Especially at the center of the specimen near the interface, the residual stress, $\sigma_{x}$ obtained from the finite element analysis was compressive, whereas measurement using X-ray yielded tensile $\sigma_{x}$. Here we discuss two dimensional superposition model the discrepancy between the results from the two dimensional finite element analysis and X-ray measurement.

대형 증기터빈 물유입에 의한 손상메커니즘 분석과 원상복구특성 연구 (Study on Damage Mechanism Analysis and Recovery Characteristic of the Large Scale Steam Turbine Cased by Water Induction)

  • 김두영;박광하;이봉희
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the damage mechanism of large scale steam turbine due to water induction was analyzed and recovery characteristics were reviewed. A turbine consists of the rotating rotor and the stationary casing, and the clearance between them is very small for the efficiency enhancement. If water induction, while relatively cold steam or water is introduced into turbine, occurs, the considerable humping is caused at the casing near the initial water induction point and that induces the rubbing between rotor and casing. Finally, it leads to the catastrophic failure. Bowed rotor has the different characteristics in the recovery depending on damage degree. The elastic deformation due to light rubbing is recovered by turning the rotor with 3 rpm under normal operation condition, but most plastic deformation due to rubbing deforms the local microstructure and that results in permanent deformation which could not be recovered under normal operation condition. Bowed rotor has diverse characteristics depending on the recovery method, and the method is empirical and needs the cutting edge technology. Careful recovery treatment of the rotor will eliminate the risks and secure the high quality rotor similar to new rotor. If any critical error is made during the recovery, the rotor would not be recovered permanently and it should be scrapped.