• 제목/요약/키워드: Edge computing

검색결과 510건 처리시간 0.033초

Privacy-Preserving Collection and Analysis of Medical Microdata

  • Jong Wook Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.93-100
    • /
    • 2024
  • 4차 산업혁명의 도래와 함께 인공지능, 빅데이터, 사물인터넷, 클라우드 컴퓨팅 등의 첨단 정보 기술이 다양한 산업 분야에서 혁신을 이끌고 있다. 이 기술들은 방대한 양의 데이터를 생성하고 있으며, 많은 기업들이 이를 활용하고 있다. 그러나 개인 데이터 수집 시 발생할 수 있는 프라이버시 침해 위험으로 인해 사용자들은 민감한 정보 제공을 망설이고 있다. 특히 의료 분야에서는 환자의 병명과 같은 민감한 정보 수집이 큰 도전이 되고 있으며, 프라이버시 문제가 데이터 수집과 분석의 장애가 되고 있다. 본 연구는 프라이버시 보호를 유지하면서도 통계적 정보를 효과적으로 추출할 수 있는 의료 데이터 수집 및 분석 기법을 제안한다. 제안 기법은 기존의 단순한 데이터 수집을 넘어서, 프라이버시를 보장하면서 수집된 데이터에서 통계적 정보를 효과적으로 추출하는 방법을 포함한다. 실제 데이터를 이용한 성능 평가에서는 제안된 기법이 기존 방법보다 더 효과적으로 프라이버시를 보존하며 통계적 정보를 도출할 수 있음을 입증한다.

딥러닝 기술을 적용한 그래프 알고리즘 성능 연구 (Research on Performance of Graph Algorithm using Deep Learning Technology)

  • 노기섭
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.471-476
    • /
    • 2024
  • 다양한 스마트 기기 및 컴퓨팅 디바이스의 보급에 따라 빅데이터 생성이 광범위하게 일어나고 있다. 기계학습은 데이터의 패턴을 학습하여 추론을 수행하는 알고리즘이다. 다양한 기계학습 알고리즘 중에서 주목을 받는 알고리즘은 신경망 기반의 딥러닝 학습이다. 딥러닝은 다양한 응용이 발표되면서 빠른 성능 향상을 달성하고 있다. 최근 딥러닝 알고리즘 중에서 그래프 구조를 활용하여 데이터를 분석하려는 시도가 증가하고 있다. 본 연구에서는 그래프 구조를 활용하여 딥러닝 네트워크에 전달하기 위한 그래프 생성 방법을 제시한다. 본 논문은 그래프 생성 과정에서 노드의 속성과 간선의 가중치를 일반화하고 행렬화 과정을 제시하여 딥러닝 입력에 필요한 구조로 전환하는 방법을 제시한다. 그래프 생성 과정에서 속성과 가중치 정보를 보전할 수 있는 선형변환 매트릭스 적용 방법을 제시한다. 마지막으로 일반 그래프의 딥러닝 입력 구조를 제시하고 성능 분석을 위한 접근법을 제시한다.

모바일 인공지능 워크로드의 파일 접근 특성 분석 (Analysis for File Access Characteristics of Mobile Artificial Intelligence Workloads)

  • 이정하;임수정;반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.77-82
    • /
    • 2024
  • 최근 인공지능 기술의 발전으로 모바일 환경에서 AI 응용을 수행하는 사례가 늘고 있다. 하지만, 모바일 환경은 데스크탑이나 서버에 비해 자원이 제한적이므로 인공지능 워크로드를 모바일에서 효율적으로 수행하기 위한 연구가 최근 주목받고 있다. 대부분의 연구는 컴퓨팅 자원의 제약을 해소하기 위한 엣지 또는 클라우드로의 오프로딩에 초점이 맞추어져 있으며, 스토리지 접근과 관련한 파일 입출력 특성에 관한 연구는 아직까지 널리 이루어지지 않고 있다. 본 논문에서는 모바일 환경에서 딥러닝 애플리케이션의 실행 시 발생하는 파일 입출력 트레이스를 분석하고, 기존 모바일 워크로드와의 차이점에 대해 분석한다. 본 논문의 분석 결과가 딥러닝의 파일 접근 특성을 고려하여 미래의 스마트폰 시스템 소프트웨어를 효율적으로 설계하는 데에 활용되기를 기대한다.

CompGenX: GenVoca와 XML 기반의 컴포넌트 코드 생성 시스템 (CompGenX: Component Code Generation System based on GenVoca and XML)

  • 최승훈
    • 인터넷정보학회논문지
    • /
    • 제4권3호
    • /
    • pp.57-67
    • /
    • 2003
  • 소프트웨어 생산 라인은. 소프트웨어 자산에 존재하는 일반적인 컴포넌트를 구체화하고 미리 정의된 아키텍처를 기반으로 조립함으로써, 고품질의 응용 프로그램을 빠르게 개발할 수 있도록 해 주는 것을 목적으로 한다. 본 논문에서는, 소프트웨어 생산 라인 구축을 지원하기 위하여 GenVoco 아키텍처와 XML/XSLT 기술을 이용한 컴포넌트 코드 자동 생성 기법과, 이를 기반으로 한 컴포넌트 코드 생성 시스템인 CompGenX(Component Generator using XML)를 제안한다. CompGenX은 컴포넌트 코드 생성 시에 컴포넌트의 재구성성을 지원함으로써 재사용자가 컴포넌트 재사용 시 자신의 목적에 맞는 컴포넌트의 소스 코드를 자동으로 생성할 수 있게 해 준다. 이를 위한 컴포넌트 개발 과정은 크게 컴포넌트 패밀리 구축 과정과 컴포넌트 재사용 과정으로 나누어진다. CompGenX는 컴포넌트 패밀리 구축 과정을 위하여, 도메인 분석을 위한 특성 모델 작성 도구, 도메인 설계를 위한 도메인 아키텍처 정의 도구를 제공한다. 또한 코드 자동 생성에 필요한 구성 지식 명세서와 코드 템플릿 작성 도구를 제공한다. 컴포넌트 재사용 과정을 위해서 CompGenX는, 컴포넌트 패밀리 검색 도구, 컴포넌트 커스터마이징 도구 및 컴포넌트 코드 생성기 등을 제공한다. 본 논문의 컴포넌트 코드 자동 생성 기법과 생성 시스템은 컴포넌트 기반 소프트웨어 생산 라인 구축을 위한 기반 기술로서 적용될 수 있다.

  • PDF

생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거 (Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks)

  • 왕야오;정우진;문영식
    • 인터넷정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.43-54
    • /
    • 2018
  • 연무가 있는 상황에서 촬영된 영상은 낮은 대비로 인해 시인성이 낮아지는 문제가 있다. 이렇게 연무로 인해 흐릿한 영상에서 연무의 효과를 제거하는 과정을 연무제거라고 한다. 연무제거에서 가장 중요한 문제 중 하나는 전달지도 (transmission map) 또는 깊이지도 (depth map)를 정확하게 추정하는 것이다. 본 논문에서는 정확한 깊이지도 추정을 위해 생성적 대립쌍 신경망 (Generative Adversarial Network: GAN)을 이용한 정확한 깊이 영상 추정 방법을 제안한다. 제안된 GAN 모델은 흐릿한 입력영상과 이에 상응하는 깊이지도 간의 비선형 매핑을 학습한다. 그리고 연무제거단계에서는 훈련된 모델을 사용하여 입력영상의 깊이지도를 추정하고 이것을 전달지도를 계산하는데 사용한다. 이어서 guided filter를 사용하여 전달지도를 다듬는다. 마지막으로 대기 산란 모델을 기반으로 연무가 제거된 영상을 복원한다. 제안된 GAN 모델은 합성실내영상으로 훈련되었다. 하지만 실제 연무영상에 대해서도 적용할 수 있다. 이를 실험을 통해 증명하였다. 또한 실험에서 제안된 방법이 이전에 연구된 방법에 비해 시각적 및 정량적 측면에서 우수한 결과를 나타냈다.

2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석 (Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry)

  • 최호신;김종경
    • Journal of Radiation Protection and Research
    • /
    • 제17권1호
    • /
    • pp.43-56
    • /
    • 1992
  • 입자 수송방정식에서 각변수(angular variable)를 각분할근사법으로 해석할 때 나타나는 이상 현상인 ray effect를 치유할 수 있는 방법의 하나로써, 유한 분할각(discrete angle quadrature)을 입자속의 공간적 분포로써 조종하는 방법인 각분할요소법 (discrete elements method)을 근거로 하여 2차원 직각좌표계에서의 입자 수송 해석 프로그램(TWODET)을 개발하였다. 평판형 등방적 고정선원이 존재하는 균질 사각형 흡수체에 대해 TWODET로 해석한 결과, 각 요소가 K-2, L인 경우에도 DOT 4.3(S-10)에서보다 ray effect 치유에 더 효과가 있음을 확인하였다. 그러나, 계산시간은 기존의 각분할법에서보다 약 4배 더 소비되었다. 선원에서 바로 진공(vacuum boundary)으로 떨어지는 구조의 경우, TWODET의 결과에서도 심한 왜곡을 보이고 있는데 선원과 바로 이웃한 진공간의 급격한 불연속성으로 인함으로 추측된다 고정선원이 있는 매질에 강한 흡수체가 추가된 구조의 경우에서도 TWODET(K-3, L-4)로 DOT 4.3(S-10)보다 좋은 결과를 보였다.

  • PDF

대화형 유전자 알고리즘을 이용한 감성기반 비디오 장면 검색 (Emotion-based Video Scene Retrieval using Interactive Genetic Algorithm)

  • 유헌우;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제10권6호
    • /
    • pp.514-528
    • /
    • 2004
  • 본 논문에서는 감성에 기반한 장면단위 비디오 검색방법을 제안한다 먼저 특정 줄거리를 담은 장면 비디오 클립에서 급진적/점진적 샷 경계 검출 후. "평균 색상 히스토그램", "평균 자기", "평균 에지 히스토그램", "평균 샷 시간", "점진적 샷 변화율"의 5가지 특징을 추출하고, 이 특징과 사람이 막연하게 가지고 있는 감성공간과의 매핑을 대화형 유전자 알고리즘(IGA, Interactive Genetic Algorithm)을 통하여 실현한다. 제안된 검색 알고리즘은 초기 모집단 비디오들에 대해 찾고자 하는 감성을 내포하고 있는 비디오를 선택하면 선택된 비디오들에서 추출된 특징 벡터를 염색체로 간주하고 이에 대해 교차연산(crossover)을 적용한다. 다음에 새롭게 생성된 염색체들과 특징벡터로 색인된 데이타베이스 비디오들간에 유사도 함수에 의해 가장 유사한 비디오들을 검색하여 다음 세대의 집단으로 제시한다. 이와 같은 과정을 여러 세대에 걸쳐서 실행하여 사용자가 가지고 있는 감성을 내포하는 비디오 집단들을 얻게 된다 제안된 방법의 효과성을 보이기 위해, 300개의 광고 비디오 클립들에 대해 "action", "excitement", "suspense", "quietness", "relaxation", "happiness" 의 감성을 가진 비디오를 검색한 결과 평균 70%의 만족도를 얻을 수 있었다.

현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어 (A Realtime Expression Control for Realistic 3D Facial Animation)

  • 김정기;민경필;전준철;최용길
    • 인터넷정보학회논문지
    • /
    • 제7권2호
    • /
    • pp.23-35
    • /
    • 2006
  • 본 논문에서는 실시간으로 입력되는 동영상으로부터 영상 내에 존재하는 사람의 얼굴 및 얼굴 특징점들을 자동으로 추출한 후, 추출된 정보를 이용하여 3차원 얼굴 모델의 표정을 실시간으로 제어함으로써 현실감 있는 얼굴 애니메이션 처리가 가능한 새로운 방법을 제시한다. 입력 영상의 각 프레임으로부터 얼굴을 효과적으로 추출하기 위해 기존에 일반적으로 사용되는 색상 공간을 이용한 파라미터 검출 방법에 대변되는 새로운 비파라미터 검출 방법을 제시하였다. 기존의 파라미터 검출 방법은 일반적으로 얼굴의 피부 색상분포를 가우지언 형태로 표현하며 특히 주변조명의 변화 및 배경 영상 등에 민감하게 반응하므로 정화한 영역의 검출을 위한 부가적 작업을 필요로 한다. 이러한 문제점을 효과적으로 해결하기 위하여 본 논문에서는 Hue와 Tint 색상 성분에 기반을 둔 새로운 스킨 색상 공간을 제시하고 모델의 분포특성을 직선 형식으로 표현하여 얼굴검출 시 발생되는 오류를 축소시킬 수 있었다. 또한, 검출된 얼굴 영역으로부터 정확한 얼굴특성 정보를 추출하기 위하여 각 특징영역에 대한 에지검색 결과와 얼굴의 비율 비를 적용하여 효과적으로 얼굴의 특징 영역을 검출하였다. 추출된 얼굴 특징점 변화 정보는 3차원 얼굴 모델의 실시간 표정 변화에 적용되며, 보다 실감 있는 얼굴 표정을 생성하기위하여 사람의 근육 정보와 근육의 움직이는 방법을 나타내는 Waters의 선형 근육 모델에 새로운 근육 정보들을 새롭게 추가함으로써 화장 적용하였다. 실험결과 제안된 방법을 이용하여 실시간으로 입력되는 대상의 얼굴표정을 3차원 얼굴 모델에 자연스럽게 표현할 수 있다.

  • PDF

단백질 기능 흐름 모델 구성 및 평가 기법 (A Method for Protein Functional Flow Configuration and Validation)

  • 장우혁;정석훈;한동수
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권4호
    • /
    • pp.284-288
    • /
    • 2009
  • 단백질 상호작용의 예측 및 실험 결과가 대용량으로 배포되면서 바이오 정보 기술 연구자들은 생명체 내의 단백질 상호작용 네트워크를 구성하기 위해 노력하여 왔다. 일반적으로 대용량의 상호작용 데이터들은 많은 오류를 포함한다고 알려져 있으나, 최근 단백질의 물리 화학적 특성 및 구조를 기반으로 한 방법들이 실제 실험과 병행되어 고화질(High resolution)의 결과를 제공하게 되면서, 특정 종에 대한 단백질 상호작용 네트워크가 점차 완성되고 있다. 그러나, 단순 물리적 링크 수준의 단백질 상호작용 네트워크만으로는 특정 병원체의 발병 메커니즘 규명 등과 같은 응용분야의 활용에 한계가 있다. 본 논문에서는 실험을 통하여 보고된 신호 전달 경로(signaling transduction pathway)를 이용하여 단백질 기능 간의 관계를 방향성이 있는 그래프로 표현한 단백질 기능 흐름 모델을 제시한다. 제안하는 모델은 Gene Ontology에서 정의된 molecular function을 정점(vertex)으로 가지고 이들 사이의 관계를 간선(edge)으로 표현함으로써 특정 기능의 전이를 살펴볼 수 있다. 이러한 기능 흐름 모델은 수 만개의 정점(vertex)으로 구성된 단백질 상호작용 네트워크에서 의미 있는 경로를 추출하는 데에 제약 혹은 참조 조건으로 사용될 수 있어 향후 활용도가 클 것으로 기대한다. 평가는 KEGG에서 제공되는 11개의 인간 신호 전달 경로 각각에 대하여 대상 경로를 제외한 나머지로부터 생성된 모델과의 크론바하 알파 계수(Cronbach's alpha)를 측정하였고(${\alpha}=0.67$), 총 1023개의 흐름 중 ${\alpha}=0.6$ 이상의 신뢰도에 대하여 총 765개의 흐름을 가지는 기능 흐름 모델을 최종 구성하였다.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.