• 제목/요약/키워드: Edge and boundary detection

검색결과 124건 처리시간 0.024초

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.

Diagnosis of Observations after Fit of Multivariate Skew t-Distribution: Identification of Outliers and Edge Observations from Asymmetric Data

  • Kim, Seung-Gu
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1019-1026
    • /
    • 2012
  • This paper presents a method for the identification of "edge observations" located on a boundary area constructed by a truncation variable as well as for the identification of outliers and the after fit of multivariate skew $t$-distribution(MST) to asymmetric data. The detection of edge observation is important in data analysis because it provides information on a certain critical area in observation space. The proposed method is applied to an Australian Institute of Sport(AIS) dataset that is well known for asymmetry in data space.

잡음추측을 이용한 자동적인 에지검출 문턱값 선택과 그 응용 (Automatic threshold selection for edge detection using a noise estimation scheme and its application)

  • 김형수;오승준
    • 한국통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.553-563
    • /
    • 1996
  • Detecting edges is one of issues with essentialimprotance in the area of image analysis. An edge in an image is a boundary or contour at which a significant change occurs in image intensity. Edge detection has been studied in many addlications such as imagesegmentation, robot vision, and image compression. In this paper, we propose an automatic threshold selection scheme for edge detection and show its application to noise elimination. The scheme suggested here applied statistical properties of the noise estimated from a noisy image to threshold selection. Since a selected threshold value in the scheme depends on not the characgreistic of an orginal image but the statistical feature of added noise, we can remove ad-hoc manners used for selecting the threshold value as well as decide the value theoretically. Furthermore, that shceme can reduce the number of edge pixels either generated or lost by noise. an application of the scheme to noise elimination is shown here. Noise in the input image can be eliminated with considering the direction of each edge pixedl on the edge map obtained by applying the threshold selection scheme proposed in this paper. Achieving significantly improved results in terms of SNR as well as subjective quality, we can claim that the suggested method works well.

  • PDF

초음파 영상의 통계적 특성에 근거한 심내벽 윤곽선 검출 (The Endocardial Boundary Detection based on Statistical Charact'eristics of Echocardiographic Image)

  • 원철호;김명남;조진호
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.365-372
    • /
    • 1996
  • The researches to acquire diagnostic parameters from ultrasonic images are advanced with the progress of the digital image processing technique. Especially, the detection of endocardial boundary is very important in ultrasonic images, because endocardial boundary is used as a clinical parameter to estimate both the cardiac area and the variation of cardiac volume. Various methods to detect cardiac boundary are proposed, but these are insufficient to detect boundary. In this paper, an algorithm that detects the endocardial boundary, expanding the cavity region from the center using statistical information, is proposed The value of mean and sty:nd, wd deviation in cavity region is lower than those in muscle re- gion. Therefore, if we define the multiplication of mean and standard deviation as homogeneous coefficient, it can lead to conclusion that the pixels with small variation of these coefficleno are cavity region, and extraction of endocardial boundary from cavity region is possible. The proposed method detected endocardial boundary more effectively than edge based or threshold based method and is robuster to noise than radial searching method that has high dependency for center position.

  • PDF

마스크 내 영상의 휘도 변화를 이용한 에지검출에 관한 연구 (A Study on Edge Detection using Grey-level Variation of Mask Image)

  • 이창영;김남호
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.204-209
    • /
    • 2013
  • 영상매체의 발전으로 영상처리가 여러 분야에 적용되고 있으며, 영상의 밝기가 급격히 변화하는 경계 부분은 에지가 중요한 정보와 특징을 포함하므로 영상의 특징을 분석함에 있어서 중요한 요소이다. 이러한 에지를 검출하기 위한 많은 연구가 계속되어 왔으며, 기존의 에지 검출 방법은 인접한 화소 사이에 대한 관계를 이용하여 수행 속도는 우수하나, 휘도 변화를 고려하지 않는 고정된 마스크를 이용하므로 에지검출 특성이 다소 미흡하다. 따라서 본 논문에서는 마스크의 휘도 변화를 이용한 새로운 알고리즘을 제안하였다.

에지정보에 적응적인 마스크를 이용한 시간방향 오류 은닉 방법 (A Temporal Error Concealment Method Based on Edge Adaptive Masking)

  • 김용우;임찬;강현수
    • 대한전자공학회논문지SP
    • /
    • 제42권3호
    • /
    • pp.91-98
    • /
    • 2005
  • 본 논문에서는 영상의 에지성분을 이용하여 손실된 프레임에서의 오류를 은닉하는 방법을 제안한다. 제안된 방법에서는 손실된 블록의 주변에 존재하는 상, 하, 좌, 우의 일정 부분을 에지 추출을 위한 영역으로 정의하고, 정의된 네 부분의 영역은 방향에 따라 선택적인 에지 연산자를 적용시켜 에지 성분을 추출한다. 이 에지정보는 영상이 복잡한 부분과 단순한 부분에 대해 복잡도를 결정하는 판단 기준이 되며 경계정합을 위한 마스크 폭을 조절하게 된다. 즉, 제시된 방법은 경계정합 수행시 정확도를 높이기 위하여 네 부분에서 추출된 에지성분의 양에 비례하여 방향에 따라 경계정합 마스크의 폭을 조절하고, 이에 따라 영상의 윤곽을 나타내는 에지 특성에 가중치를 적용함으로써, 개선된 움직임 벡터를 얻을 수 있도록 하였다. 기존의 방법들과 제안된 방법에 대한 오류은닉 결과를 비교함으로써 제안된 방법의 우수성 검증 및 장단점에 대해 분석한다.

공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구 (A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets)

  • 정윤재;박현철;조명희
    • 한국지리정보학회지
    • /
    • 제15권1호
    • /
    • pp.87-98
    • /
    • 2012
  • 하천 유역에서 하천 경계선(river boundary) 은 하천의 물길을 따라 흐르는 물과 육지의 경계를 의미한다. 하천 경계선 매핑은 하천 유역의 지형적인 변화를 탐지하고 홍수 예방을 위해서 중요하다. 하천 유역의 지표면의 불균일성과 하천 수위의 실시간 변화 등으로 인해 발생하는 하천 유역의 침식 작용 등의 요인으로 인해서 기존의 지반조사 기술은 하천 경계선을 매핑 하는데 효과적이지 않다. 공간 정보 자료는 해당 지역에 접근하지 않고도 해당 지역에 관한 지형적인 정보를 획득할 수 있어서, 하천 지형 조사 및 하천 측량 등 하천 유역의 지형연구에 굉장히 유용하게 쓰일 수 있다. 본 연구에서는, 원격탐사 기술에서 대표적으로 사용되는 공간 정보 자료들인 항공 라이다 자료(airborne LiDAR data)와 항공사진(aerial photograph) 들을 활용하여, 에지 검출기법(edge detection algorithm) 및 영상 분할 기법(image segmentation algorithm) 등의 디지털 영상 처리 기법 등의 방법을 적용하여 3차원 하천 경계선을 매핑하는 방법을 개발하였고, 주어진 기준선을 따라 결정된 점검 지점들로부터 추출된 하천 경계선까지의 수평 및 수직 거리의 절대값을 계산하여 정확도 측정을 하였을 때, 본 연구에서 제시된 방법을 이용하여 추출된 3차원 하천 경계선은 높은 수직 및 수평 정확도를 가짐을 보여준다.

Dempster-Shafer's Evidence Theory-based Edge Detection

  • Seo, Suk-Tae;Sivakumar, Krishnamoorthy;Kwon, Soon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.19-24
    • /
    • 2011
  • Edges represent significant boundary information between objects or classes. Various methods, which are based on differential operation, such as Sobel, Prewitt, Roberts, Canny, and etc. have been proposed and widely used. The methods are based on a linear convolution of mask with pre-assigned coefficients. In this paper, we propose an edge detection method based on Dempster-Shafer's evidence theory to evaluate edgeness of the given pixel. The effectiveness of the proposed method is shown through experimental results on several test images and compared with conventional methods.

칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출 (Detection of Road Lane with Color Classification and Directional Edge Clustering)

  • 정차근
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.86-97
    • /
    • 2011
  • 본 논문에서는 칼라분류 및 방향성 에지정보의 클러스터링과 이들의 통합에 의한 새로운 도로영역 및 차선검출 알고리즘을 제안한다. 도로영역 및 차선을 하나의 인식대상 물체로 취급하고, 통계적 파라미터의 반복 최적화에 의한 칼라정보의 클러스터링을 수행해서 검출과 인식을 위한 초기정보로 사용한다. 다음으로, 칼라정보가 갖는 물체인식 의 한계를 개선하기 위해 에지정보를 검출하고, 관심영역(Region Of Interest for Lane Boundary(ROI-LB))의 추출과 ROI-LB 영역에서 방향성 에지정보의 검출과 클러스터링을 수행한다. 칼라분류 및 에지 클러스터링의 결과를 통합해, 이들 각각의 정보가 갖는 특징을 이용함으로서 도로환경에 적합한 도로영역 및 차선을 검출할 수 있도록 한다. 제안방법은 도로와 차선에 관한 파라미터릭 수학적 모델을 사용하지 않고 칼라 및 에지의 클러스터링 정보에 의한 non-parametric 방법으로 다양한 도로 환경에 유연한 대응이 가능한 장점을 갖는다. 본 제안방법의 유효성을 입증하기 위해 상이한 촬상조건 및 도로환경에서의 영상에 대한 실험결과를 제시한다.

영역의 분할정도에 기반한 에지 검출 기법 (Region Separateness-based Edge Detection Method)

  • 서석태;정혜천;이인근;권순학
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.939-944
    • /
    • 2007
  • 에지는 영상에서 객체와 객체 사이의 경계를 나타내는 중요 정보로서 Sobel, Prewitt, Roberts, Canny 등의 미분 연산자에 기반한 다양한 에지 검출 기법이 있다. 그러나 이러한 기법들은 밝기값 변화가 완만한 부분에서의 에지 검출에는 둔감하며, 한 픽셀의 두께로 이루어진 에지의 경우 2중 에지를 검출하는 문제점이 있다. 또한 에지를 검출하기 위해서는 효과적 에지 검출 연산자뿐만 아니라 적절한 임계값이 필수적이다. 그러나 적절한 임계값을 찾는 것은 매우 까다로운 문제이다. 본 논문에서는 기존의 미분 연산자에 기반한 에지 검출 기법의 문제점을 극복하기 위해서 픽셀간의 미분값이 아니라 영역과 영역의 분할정도를 기반으로 에지를 검출하는 기법과 이에 대한 임계값 결정 기법을 제안한다. 그리고 기존의 미분 연산자에 기반한 에지 추출 기법과 제안한 기법을 시험 영상에 적용하여 얻어진 결과를 통하여 제안한 기법의 효용성을 보인다.