DOI QR코드

DOI QR Code

Diagnosis of Observations after Fit of Multivariate Skew t-Distribution: Identification of Outliers and Edge Observations from Asymmetric Data

  • Kim, Seung-Gu (Department of Data and Information, Sangji University)
  • Received : 2012.10.22
  • Accepted : 2012.11.08
  • Published : 2012.12.31

Abstract

This paper presents a method for the identification of "edge observations" located on a boundary area constructed by a truncation variable as well as for the identification of outliers and the after fit of multivariate skew $t$-distribution(MST) to asymmetric data. The detection of edge observation is important in data analysis because it provides information on a certain critical area in observation space. The proposed method is applied to an Australian Institute of Sport(AIS) dataset that is well known for asymmetry in data space.

Keywords

References

  1. Azzalini, A. (1985). A class of distribution which includes the normal ones, Scandinavian Journal of Statistics, 33, 561-574.
  2. Azzalini, A. and Dalla-Valle, A. (1996). The multivariate skew normal distribution, Biometrika, 83, 715-726. https://doi.org/10.1093/biomet/83.4.715
  3. Bickel, P. J. and Doksum, K. A. (1981). An analysis of transformations revisited, Journal of American Statistical Association, 76(374), 296-311. https://doi.org/10.1080/01621459.1981.10477649
  4. Cabral, C. S., Lachos, V. H. and Prates, M. O. (2012). Multivariate mixture modeling using skew-normal independent distribution, Computational Statistics and Data Analysis, 56, 126-142. https://doi.org/10.1016/j.csda.2011.06.026
  5. Cook, R. D. and Weisberg, S. (1994). An Introduction to Regression Graphics, 56, Wiley, New York.
  6. Ho, H. J., Lin, T. I., Chen, H.-Y. and Wang, W.-L. (2012). Some results on the truncated multivariate t distribution, Journal of Statistical Planning & Inference, 142, 25-40. https://doi.org/10.1016/j.jspi.2011.06.006
  7. Kim, H. J. (2008). Moments of truncated Student-t distribution, Journal of Korean Statistical Society, 37, 81-87. https://doi.org/10.1016/j.jkss.2007.06.001
  8. Kim, S.-G. (2012). ECM Algorithm for fitting of mixtures of multivariate Skew t-Distribution, Communications of the Korean Statistical Society, 19, 673-684. https://doi.org/10.5351/CKSS.2012.19.5.673
  9. Lachos, V. H., Ghosh, P. and Arellano-Valle, R. B. (2010). Likelihood based inference for skew-normal independent linear mixed model, Statistica Sinica, 20, 303-322.
  10. Lin, T.-I. (2010). Robust mixture modeling using multivariate skew t distributions, Statistics and Computing, 20, 343-356. https://doi.org/10.1007/s11222-009-9128-9
  11. Lo, K., Brinkman, R. R. and Gottardo, R. (2008). Automated gating of ow cytometry data via robust model-based clustering. Cytometry Part A, 73, 321-332.
  12. Lo, K. and Gottardo, R. (2012). Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: An alternative to the skew-t distribution, Statistics and Computing, 22, 33-52. https://doi.org/10.1007/s11222-010-9204-1
  13. McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Wiley, New York.
  14. Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T. I., Maier, L., Baecher-Allan, C., McLachlan, G. J., Tamayo, P., Ha er, D. A., De Jager, P. L. and Mesirov, J. P. (2009). Automated high-dimensional ow cytometric data analysis, Proceedings of the National Academy of Sciences of the United States of America, 106, 8519-8524. https://doi.org/10.1073/pnas.0903028106
  15. Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multivariate skew distribution with application to Bayesian regression model, The Canadian Journal of Statistics, 31, 129-150. https://doi.org/10.2307/3316064

Cited by

  1. An Alternating Approach of Maximum Likelihood Estimation for Mixture of Multivariate Skew t-Distribution vol.27, pp.5, 2014, https://doi.org/10.5351/KJAS.2014.27.5.819