• Title/Summary/Keyword: Edge Component

Search Result 315, Processing Time 0.025 seconds

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction (에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Characters in natural image are an important information with various context. Previous work of character region detection algorithms is not detect of character region in case of image complexity and the surrounding lighting, similar background to character, so this paper propose an method of character region detection in natural image using edge and connected component by morphological reconstructions. Firstly, we detect edge using Canny-edge detector and connected component with local min/max value by morphological reconstructed-operation in gray-scale image, and labeling each of detected connected component elements. lastly, detected candidate of text regions was merged for generation for one candidate text region, Final text region detected by checking the similarity and adjacency of neighbor of text candidate individual character. As the results of experiments, proposed algorithm improved the correctness of character regions detection using edge and connected components.

Detecting Boundaries between Different Color Regions in Color Codes

  • Kwon B. H.;Yoo H. J.;Kim T. W.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.846-849
    • /
    • 2004
  • Compared to the bar code which is being widely used for commercial products management, color code is advantageous in both the outlook and the number of combinations. And the color code has application areas complement to the RFID's. However, due to the severe distortion of the color component values, which is easily over $50{\%}$ of the scale, color codes have difficulty in finding applications in the industry. To improve the accuracy of recognition of color codes, it'd better to statistically process an entire color region and then determine its color than to process some samples selected from the region. For this purpose, we suggest a technique to detect edges between color regions in this paper, which is indispensable for an accurate segmentation of color regions. We first transformed RGB color image to HSI and YIQ color models, and then extracted I- and Y-components from them, respectively. Then we performed Canny edge detection on each component image. Each edge image usually had some edges missing. However, since the resulting edge images were complementary, we could obtain an optimal edge image by combining them.

  • PDF

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

Aggregation Clustering using Graphic Conecpt of K- Edge Component (K-Edge Component의 그래픽 정의를 이용한 집합화 클러스터링)

  • Lim, Keun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.975-977
    • /
    • 2000
  • 본 논문에서는 클러스터 정의시 사용하게 되는 특성으로 노드간 패스 수에 기반한 K-edge 컴포넌트의 그래픽 정의 방법과 노드를 클러스터화 하는 집합화(Aggregation) 방법을 제시하였다. 집합화된 하이퍼텍스트 분리를 통해 이전 결과를 개선할 수 있으며, 집합내의 노드간 관련성을 가시화하여 비교할 수 있다.

  • PDF

A New Fingerprint Reference-Point Detection Method Using Cosine Component (코사인 성분을 이용한 새로운 지문 기준점 검출 방법)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1511-1513
    • /
    • 2007
  • A new reference point location method using the cosine component is proposed, where an edge map is defined and used to find the reference point. Because all processes used in the proposed method are performed at the block level, less processing time is required. Experimental results show that the proposed method can effectively detect the reference point with higher speed and accuracy for all types of fingerprints.

Colour Constancy using Grey Edge Framework and Image Component analysis

  • Savc, Martin;Potocnik, Bozidar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4502-4512
    • /
    • 2014
  • This article presents a reformulation of the Grey Edge framework for colour constancy. Colour constancy is the ability of a visual system to perceive objects' colours independently of their scenes' illuminants. Colour constancy algorithms try to estimate the colour of an illuminant from image values. This estimation can later be used to correct the image as though it were taken under a white illuminant. The modification presented allows the framework to incorporate image-specific filters instead of the commonly used edge detectors. A colour constancy algorithm is proposed using PCA and FastICA linear component analyses methods for the construction of such filters. The results show that the proposed method improves the accuracies of the Grey Edge framework algorithms whilst on the other hand, achieving comparable accuracies with the state-of-the-art methods, but improving their time efficiencies.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Component-based AI Application Support System using Knowledge Sharing Graph for EdgeCPS Platform (EdgeCPS 플랫폼을 위한 지식 공유 그래프를 활용한 컴포넌트 기반 AI 응용 지원 시스템)

  • Kim, Young-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1103-1110
    • /
    • 2022
  • Due to the rapid development of AI-related industries, countless edge devices are working in the real world. Since data generated within the smart space consisted of these devices is beyond imagination, it is becoming increasingly difficult for edge devices to process. To solve this issue, EdgeCPS has appeared. EdgeCPS is a technology to support harmonious execution of various application services including AI applications through interworking between edge devices and edge servers, and augmenting resources/functions. Therefore, we propose a knowledge-sharing graph-based componentized AI application support system applicable to the EdgeCPS platform. The graph is designed to effectively store information which are essential elements for creating AI applications. In order to easily change resource/function augmentation under the support of the EdgeCPS platform, AI applications are operated as components. The application support system is linked with the knowledge graph so that users can easily create and test applications, and visualizes the execution aspect of the application to users as a pipeline.

Optimal Combination of Component Images for Segmentation of Color Codes (칼라 코드의 영역 분할을 위한 성분 영상들의 최적 조합)

  • Kwon B. H;Yoo H-J.;Kim T. W.;Kim K D.
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.33-42
    • /
    • 2005
  • Identifying color codes needs precise color information of their constituents, and is far from trivial because colors usually suffer severe distortions throughout the entire procedures from printing to acquiring image data. To accomplish accurate identification of colors, we need a reliable segmentation method to separate different color regions from each other, which would enable us to process the whole pixels in the region of a color statistically, instead of a subset of pixels in the region. Color image segmentation can be accomplished by performing edge detection on component image(s). In this paper, we separately detected edges on component images from RGB, HSI, and YIQ color models, and performed mathematical analyses and experiments to find out a pair of component images that provided the best edge image when combined. The best result was obtained by combining Y- and R-component edge images.