• Title/Summary/Keyword: Edge Beam

Search Result 352, Processing Time 0.032 seconds

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

Performance Experiment of Electron Beam Convergence Instrument (Finishing 용 전자빔 집속 장치의 성능 실험)

  • Lim, Sun Jong
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.6-8
    • /
    • 2015
  • Finishing process includes deburring, polishing and edge radiusing. It improves the surface profile of specimen and eliminates the alien substance on surface. Deburring is the elimination process for debris of edges. Polishing lubricates surfaces by rubbing or chemical treatment. There are two types for electron finishing. The one is using pulse beam. The other is using the convergent and scanning electron beam. Pulse type device appropriates the large area process. But it does not control the beam dosage. Scanning type device has advantages for dosage control and edge deburring. We design the convergence and scan type. It has magnetic lenses for convergence and scan device for scanning beam. Magnetic lenses consist of convergent and objective lens. The lenses are designed by the specification(beam size and working distance). In this paper, we evaluate the convergence performance by pattern process. Also, we analysis the results and important factors for process. The important factors for process are beam size, pressure, stage speed and vacuum. These results will be utilized into systematizing pattern shape and the factors.

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2000
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the clad beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical results shows that shear and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even thought the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam becomes smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Fabrication of interface-controlled Josephson junctions using Sr$_2$AlTaO$_6$ insulating layers

  • Kim, Jun-Ho;Choi, Chi-Hong;Sung, Gun-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.165-168
    • /
    • 2000
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. A low-dielectric Sr$_2$AlTaO$_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2$Cu$_3$O$_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the edge of the YBCO base electrode using high energy ion-beam treatment prior to deposition of the YBCO counter electrode. We investigated the effects of high energy ion-beam treatment, annealing, and counter electrode deposition temperature on the characteristics of the interface-controlled Josephson junctions. The junction parameters such as T$_c$, I$_c$c, R$_n$ were measured and discussed in relation to the barrier layer depending on the process parameters.

  • PDF

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • This paper proposes a transfer matrix method for the bending vibration of two types of tapered beams subjected to axial force, and it is applied to analyze tapered beams with an edge or multiple edge open cracks. One beam type is assumed to be reduced linearly in the cross-section height along the beam length. The other type is a tapered beam in which the cross-section height and width with the same taper ratio is linearly reduced simultaneously. Each crack is modeled as two sub-elements connected by a rotational spring, and the method can evaluate the effect of cracking on the desired number of eigenfrequencies using a minimum number of subdivisions. Among the power series available for the solutions, the roots of the differential equation are computed using the Frobenius method. The computed results confirm the accuracy of the method and are compared with previously reported results. The effectiveness of the proposed methods is demonstrated by examining specific examples, and the effects of cracking and axial loading are carefully examined by a comparison of the single and double tapered beam results.

Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods

  • Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Sevval Ozturk;Hasan Sesli
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.565-575
    • /
    • 2023
  • This study represents a numerical research in vibration and buckling of functionally graded material (FGM) beam comprising edge crack by using finite element method (FEM) and multilayer perceptron (MLP). It is assumed that the material properties change only according to the exponential distributions along the beam thickness. FEM and MLP solutions of the natural frequencies and critical buckling load are obtained of the cracked FGM beam for clamped-free (C-F), hinged-hinged (H-H), and clamped-clamped (C-C) boundary conditions. Numerical results are obtained to show the effects of crack location (c/L), material properties (E2/E1), slenderness ratio (L/h) and end supports on the bending vibration and buckling properties of cracked FGM beam. The FEM analysis used in this paper was verified with the literature, and the fundamental frequency ratio ($\overline{P_{cr}}$) and critical buckling load ratio ($\overline{{\omega}}$) results obtained were compared with FEM and MLP. The results obtained are quite compatible with each other.

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.306-309
    • /
    • 1999
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the claded beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical result shows that shear stress and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even though the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam become smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.