• 제목/요약/키워드: Eco-friendly Composite

검색결과 127건 처리시간 0.023초

분리배출이 용이한 크림제형용 화장품 패키징 개발 (Development of Cosmetic Packaging for Cream Formulation with Easy Separation and Discharge)

  • 유상규;강호상;오재영
    • 한국포장학회지
    • /
    • 제29권2호
    • /
    • pp.73-78
    • /
    • 2023
  • The cosmetics industry faces a significant challenge in addressing the decreased recycling rate of cosmetic containers due to the composite materials used to meet consumers' aesthetic satisfaction. To address thees issues, eco-friendly packaging solutions such as refill packaging and single-material use have been developed. However, the market for eco-friendly cosmetics packaging requires a product that meets consumers' demands for aesthetics, sensitivity, and eco-friendliness while also performing as well as existing products. This study presents a solution to the challenge of the decreased recycling rate of cosmetic containers by developing a new cosmetic packaging product for cream formulations. The product features an easily separable and dischargeable internal refill container, while maintaining the design aesthetics of the external container. Through various tests, the product was shown to be of equivalent quality and performance to existing cream cosmetic packaging, with no leakage or defects observed. Furthermore, the use of a single-material polypropylene refill container is expected to contribute to the improvement of the plastic recycling rate.

친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발 (Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers)

  • 박주원;김형수;김혁중;김성보
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

폐자기와 3성분계 무기결합재의 혼합비율 변화에 따른 인조석재의 역학적 특성 (The Dynamic Properties of the Artificial Stone According to the Mixed Ratio Change of the Inorganic Composite and Waste Porcelain)

  • 유용진;배상우;이상수;송하영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.95-96
    • /
    • 2012
  • This study makes with the environment-friendly artificial stone which doesn't use the cement and natural aggregate and increases the blast furnace slag that is the eco-friendly material that is the industrial byproduct, fly ash, and availability of the red mud and applies the coares aggregate substitute material as the cleistothecium. The experimental plan according to it indicated the compressive strength and flexural strength which is the most excellent in the mixied ratio 40% of the result degree of closeness magnetism of experimenting with the optimal mix obtained through the preceding stude.

  • PDF

아마/비닐 에스테르 자연 섬유 복합재료의 기계적 특성 분석 연구 (Investigation on Mechanical Properties of Flax/Vinyl Ester Natural Fiber Composite)

  • 박현범;공창덕;이정환;김인권;이호연
    • Composites Research
    • /
    • 제27권1호
    • /
    • pp.19-24
    • /
    • 2014
  • 본 연구에서 아마/비닐에스테르(Flax/vinyl ester)를 적용한 친환경 구조물 설계를 위한 선행 연구로서 아마/비닐 에스테르 자연 섬유 복합재료의 기계적 물성치를 분석하였다. 시편 제작을 위해 VARTM 제작 공법이 적용되었다. 참고문헌에서 제시한 자연 섬유 복합재료의 물성치와 본 연구에서 제작된 시편의 물성치를 비교하였다. 이 결과를 바탕으로 아마/비닐 에스테르 복합재료가 친환경 구조물에 적용하는 것이 유리함을 확인하였다.

친환경 가소제의 시장과 동향 (A Trend and Market in Eco-friendly Plasticizers: Review and Prospective)

  • 오은영;김백환;서종환
    • Composites Research
    • /
    • 제35권4호
    • /
    • pp.232-241
    • /
    • 2022
  • 가소제는 가공성 및 연성과 같은 기계적 특성에 바람직한 영향을 미치기 위해 중합체에 첨가되는 화학 첨가제이다. 본 논문에서는 플라스틱 시장에서 전통적으로 사용되어온 프탈레이트 기반 가소제를 대체할 수 있는 친환경 가소제의 사용과 시장에 대해 탐구한다. 바이오 가소제는 주로 농산물, 부산물 및 폐기물을 포함하는 바이오 매스 소스에서 파생된다. 바이오 매스 공급원과 관계없이 이상적인 친환경 가소제는 무독성이며, 휘발·추출·이행 현상에 대한 저항성이 높고, 상용성과 혼화성이 좋으며, 경제적이어야 한다. 글로벌 바이오 가소제 시장은 2020년 13억 달러에서 2030년까지 21억 달러에 이를 것으로 전망되며, 2021년에서 2030년까지 5.31% CAGR로 성장할 것으로 예상된다.

버섯 균사체 활용기술 동향: 2023년 상반기까지의 특허를 중심으로 (Technology trends in mushroom mycelium utilization: Focus on patents until the first half of 2023)

  • 정용현;오원정;리지순;신현재
    • 한국버섯학회지
    • /
    • 제21권3호
    • /
    • pp.83-87
    • /
    • 2023
  • The importance of biocomposites has increased owing to the changes in global consumption trends and rapid climate change. Technologies using mushroom mycelium cultivation, and molding methods for mycelial application have gained attention as potential strategies for producing eco-friendly composites. Currently, mushroom mycelia are used as raw materials for food and cosmetics; however, research on their utilization as biocomposite materials is limited. Therefore, the potential for the development of mushroom mycelium-related products and technologies is high. This review analyzes the domestic and international patent application trends related to the technologies for composite (packaging, insulation, adhesives, and leather) and food (substitute for meat) materials using mushroom mycelium, as an eco-friendly biocomposite material, to provide objective patent information that can further research and development (R&D) in this field.

Effect of Cork Extract on the Mechanical Property of Thermoplastic Polyurethane

  • Taehoon Oh;Seung-Hyun Cho;Bumyong Yoon;Hyejung Yoon;Jonghwan Suhr
    • Composites Research
    • /
    • 제36권2호
    • /
    • pp.86-91
    • /
    • 2023
  • Thermoplastic polyurethane (TPU) is a material whose mechanical properties change according to the phase separation of its unique internal microstructure and is therefore used in various industries. Use of TPU as composites helps in improving the desirable characteristics and properties in accordance with usage. Eco-friendly fillers one of the fillers are on the rise and those are mostly used for reinforcing role. Suberin, which can be extracted from cork, is the main component of cork. It is known to serve high damping property of elastomer composite. The original chemical structure of Suberin is an aliphatic polyester aggregate. In this research, Suberin is obtained after depolymerization into an oligomer having 2 or 3 ester bonds through alkaline hydrolysis. The extracted suberin was added to the matrix which is thermoplastic polyurethane as an eco-friendly filler for improving vibration damping property. As a result, when 10 wt% of suberin was added into thermoplastic polyurethane the existing trade-off relationship was overcome. And it is attained the elastic modulus and damping factor at room temperature improving 92 and 59%, respectively, compared to the original matrix. Those results are from the interaction between the microstructure of TPU and suberin.

30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구 (Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines)

  • 신혜진;이지현;문성영;이정환
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.32-36
    • /
    • 2023
  • 최근 탄소 중립 등 지속 가능한 발전을 위한 지구환경 문제가 대두되면서 기존 풍력터빈의 소재인 유리섬유 복합재의 폐기 시 처리 방안이 문제가 되고 있다. 이를 해결하기 위해 본 연구에서는 기존의 유리섬유 복합재를 대체할 수 있는 친환경 복합재인 아마섬유 기반 복합재를 활용하여 30kW 풍력터빈 블레이드를 제조하고 적합성을 평가하였다. 먼저 친환경 천연 아마섬유 복합재의 풍력터빈 블레이드 소재로 활용 가능성을 검증하기 위해 기계적 강도 시험을 수행하였으며, 그 결과 선행 아마섬유 복합재 물성 연구 대비 좀 더 우수한 강도가 측정된 것을 확인하였다. 또한 제작된 30kW 급 아마섬유 복합재 블레이드를 활용하여 아마섬유 복합재 블레이드의 정적강도를 측정하는 정적강도 성능평가 시험을 통하여 적합성을 확인하였다.