• Title/Summary/Keyword: Eco-Friendly Ship

Search Result 92, Processing Time 0.024 seconds

On the Weight Reduction of Longitudinal Members of Mid-Sized Bulk Carrier Considering the Minimum Shear Force according to Compartment Arrangement based on H-CSR (구획배치에 따른 최소 전단력을 고려한 H-CSR 기반 중형 살물선 종강도 부재의 중량 절감 방안 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Bae, Sang-Don
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.352-359
    • /
    • 2017
  • Because the Energy Efficiency Design Index(EEDI) came into effect in 2013, it is necessary to develop a new technology to overcome $CO_2$ emission regulations. In structural design viewpoint, lots of researches are carried out to develop eco-friendly and high fuel efficiency ships by weight reduction. By using the automated compartment arrangement system and automated structural design algorithm which were developed by the authors, new researches are performing to combine the above two systems. However, the effect of weight reduction was not significant because structural designs by using these systems for the midship part was carried out only focused on the minimum still water bending moment. In this paper, at first, good compartment arrangements which give the minimum still water bending moment and(or) shear force were chosen by using the automated compartment system. And then, influence of shear force on weight reduction was investigated by using the automated structural design algorithm considering longitudinal strength, local strength and shear strength of longitudinal members in cargo holds. Conclusively, it is necessary to consider the minimum still water bending moment and shear force simultaneously to reduce the weight of mid-sized bulk carrier. Also, good compartment arrangement which gives much more weight reduction compared with existing ship was proposed.

A Study on Determining Economical Speed of Diesel Freight Locomotive (화물열차의 경제속도 결정에 관한 연구)

  • Kim, Kwang-Tae;Kim, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • Rail transport has been considered an environmental-friendly transport mode compared with other transport modes such as ship, truck, and aircraft. However, air pollutions emitted by diesel locomotives have emerged as social issues. In addition, the railway industry may not be able to avoid a duty of alleviating greenhouse gases emission owing to the Korean government policies for green growth which is an economic paradigm that simultaneously pursues growth and environmental improvement. Moreover, rising oil prices has burdened a train operating company. The purpose of this paper is to develop a methodology of determining an economical speed of diesel freight locomotive from the viewpoint of the train operating company. In the methodology, we first define an operational cost function based on various cost factors and then suggest formula to calculate an economical speed of diesel freight locomotive. To estimate the influence of cost factors such as diesel price, carbon taxes, and time costs on the speed of diesel freight locomotive, sensitivity analysis was conducted.

Suggestions for Improvement of Port Charge Discount Policies - focused on Ulsan Port

  • Sangseop Lim;Sang-Mi Im;Seok-Hun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.191-198
    • /
    • 2024
  • Korea is an import and export-oriented economy that relies on shipping transportation, and sea ports play an important role in national economic growth. To secure and maintain the competitiveness of these ports, hardware and software investments are required, but policy support can also be expected to have an effect. This study identified the irrationality of the system by exploratory analysis of the port facility fee discount system for Ulsan Port, an energy hub port, and suggested improvement measures to resolve it.This study analyzed the volume of Ulsan Port and the reduction of port facility usage fees for about 10 years and identified irrational factors that despite a special port for liquid cargo, a considerable reduction for container cargo is concentrated, and even because it was a passing ship, 100% reduction for entrance and clearance fees were provided to them, which could cause serious moral hazard.. As a way to improve the port facility charge discount system at Ulsan Port, this study proposed strengthening support for eco-friendly activities to support containers, adjusting the reduction rate for passing ships, or improving the reduction and exemption application process.

Alternatives for Establishing Green Logistics System in Ulsan Port (울산항의 녹색물류체계 구축 방안)

  • Jo, Jin-Haeng
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.187-206
    • /
    • 2019
  • After reviewing the concept and previous studies related to green ports, this study analyzes the implications of green port policy of advanced ports in foreign countries and analyzes problems in terms of environmentally-friendly green port policy for Ulsan port, and to present sustainable green logistics establishment measures. The literature survey and Benchmarking methods are adopted as research methodology and the results are as follows. First, the pan-government climate change response management system, legislation of relevant laws, implementation of fiscal support policies, and roadmaps should be established. Second, the foundation for eco-friendly green growth should be established through the discovery of business models in conjunction with leading industries in the Southeastern Metropolitan Economic Area. Third, the Ulsan Port Greenport, such as AMP, in-port LNG propulsion ship, and ESI vessel incentive, should be built. Fourth, a low-carbon, high-efficiency sea-shuttle service shall be established through the introduction of the sea-shuttle service along the sea route. Fifth, energy self-reliant ports, including all institutions in the metropolitan Ulsan port area that have exceeded the level of Ulsan port Authority, should be built. Finally, water-type ports need to be built through the creation of coastal forests, the purification of marine water quality, and the introduction of colors to port.

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF

Study on the Calculation of Towing Force for LNG Bunkering Barge (LNG 벙커링 바지의 예인력 계산에 관한 연구)

  • Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Jung, Hyun-Woo;Cho, Seok-Kyu;Jung, Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.158-161
    • /
    • 2018
  • In this paper, the towing force is calculated for the LNG bunker barge. LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG(Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunker barge, a self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunker barge is similar to the shape of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance is calculated according to the ITTC 1978 method considering the wave resistance by the Rankine source method. The added resistance in waves is calculated using the modified radiated energy method considering the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared with rules of the towed barge.

  • PDF

Study on the Estimation of Towing Force for LNG Bunkering Barge (LNG 벙커링 바지의 예인력 산정에 관한 연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.378-387
    • /
    • 2018
  • In this paper, the towing force for the LNG bunkering barge was investigated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunkering barge, self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunkering barge's shape is similar to that of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance was calculated using ITTC 1978 method which considers wave resistance by the Rankine source method. The added resistance in waves was calculated using the modified radiated energy method which considers the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared to rules associated with towed barges.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seunghoon;Jung, Dongho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-kyu;Sung, Hong Gun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.185-188
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge is estimated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunker barge are in the form of towed ship connected to the tow line, the towing stability of the LNG bunker barge is very important for the safety of not only the LNG bunker barge but also the surrounding sailing vessels. The numerical code for towing simulation was developed to estimate the towing stability of the LNG bunker barge at the initial design stage. The MMG(Manoeuvring Mathematical Group) model was applied to the equations of motion and the empirical formula was applied to the maneuvering coefficients so that they could be used in the initial design stage. To validity of the developed numerical code, it was compared with published calculation and model test results. Towing simulations were carried out according to with and without stern skeg of the LNG bunker barge using the developed numerical code. Through the results of the simulations, the appropriateness of the stern skeg area designed was confirmed.

  • PDF

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation (누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.610-619
    • /
    • 2022
  • Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.