DOI QR코드

DOI QR Code

Study on the Estimation of Towing Force for LNG Bunkering Barge

LNG 벙커링 바지의 예인력 산정에 관한 연구

  • Oh, Seung-Hoon (Korea Research Institute of Ships and Ocean Engineering) ;
  • Jung, Dong-Ho (Korea Research Institute of Ships and Ocean Engineering) ;
  • Jung, Jae-Hwan (Korea Research Institute of Ships and Ocean Engineering) ;
  • Hwang, Sung-Chul (Korea Research Institute of Ships and Ocean Engineering) ;
  • Cho, Seok-Kyu (Korea Research Institute of Ships and Ocean Engineering) ;
  • Sung, Hong-Gun (Korea Research Institute of Ships and Ocean Engineering)
  • 오승훈 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정동호 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정재환 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 황성철 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 조석규 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 성홍근 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2018.10.26
  • Accepted : 2018.11.12
  • Published : 2018.12.31

Abstract

In this paper, the towing force for the LNG bunkering barge was investigated. Currently, LNG bunkering barge is being developed as an infrastructure for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. In the case of the LNG bunkering barge, self-propulsion is considered through retrofit from an operating point. Therefore, the LNG bunkering barge's shape is similar to that of the ship as compared to a towed barge, so a rule of the towed barge overestimates the towing force. In order to improve accuracy, the calm water resistance was calculated using ITTC 1978 method which considers wave resistance by the Rankine source method. The added resistance in waves was calculated using the modified radiated energy method which considers the shortwave correction method of NMRI. The performance of the towing resistances through the calm water resistance and the added resistance in waves was compared to rules associated with towed barges.

본 논문에서는 LNG 벙커링 바지에 대한 예인력을 계산하였다. 친환경 에너지원인 LNG(액화천연가스)의 전환을 위한 인프라로 LNG 벙커링 바지가 개발되고 있다. LNG 벙커링 바지의 경우, 부선의 형태로 개발되고 있으나 향후 운용관점에서 추진기 탑재 개조(Retrofit)를 통한 자항추진을 고려하고 있다. 따라서 LNG 벙커링 바지는 일반적인 예인바지와 비교하여 선박의 선형과 유사하기 때문에 선급의 부선 규칙을 통한 예인력은 과대 추정된다. 이를 극복하기 위해, 정수 중 저항은 Rankine source method를 이용한 조파저항을 고려하여 ITTC 1978 방법에 따라 계산하였고 파랑 중 부가저항은 NMRI의 단파장 보정이 고려된 수정된 방사에너지법을 이용하여 계산하였다. 계산된 정수 중 저항과 부가저항을 통해 예인저항 성능을 KR 선급의 부선 규칙과 비교 검토하였다.

Keywords

GHMHD9_2018_v42n6_378_f0001.png 이미지

Fig. 1 Ship to ship bunkering using LNG bunkering barge

GHMHD9_2018_v42n6_378_f0002.png 이미지

Fig. 2 Panel model for Rankine source method

GHMHD9_2018_v42n6_378_f0003.png 이미지

Fig. 3 Wave resistance coefficient for Wigley using Rankine source method

GHMHD9_2018_v42n6_378_f0004.png 이미지

Fig. 4 Coordinate system for added resistance in short waves

GHMHD9_2018_v42n6_378_f0005.png 이미지

Fig. 5 Three dimensional geometry of hull

GHMHD9_2018_v42n6_378_f0006.png 이미지

Fig. 6 Panel model for LNG bunkering barge

GHMHD9_2018_v42n6_378_f0007.png 이미지

Fig. 7 Calculated wave pattern of LNG bunkering barge

GHMHD9_2018_v42n6_378_f0008.png 이미지

Fig. 8 Wave resistance coefficients of LNG bunkering barge

GHMHD9_2018_v42n6_378_f0009.png 이미지

Fig. 9 Total resistance coefficients of LNG bunkering barge

GHMHD9_2018_v42n6_378_f0010.png 이미지

Fig. 10 Total resistance on LNG bunkering barge

GHMHD9_2018_v42n6_378_f0011.png 이미지

Fig. 11 Section model for strip method

GHMHD9_2018_v42n6_378_f0012.png 이미지

Fig. 12 Water line model for shortwave correction method of NMRI

GHMHD9_2018_v42n6_378_f0013.png 이미지

Fig. 13 Heave R.A.O of LNG bunkering barge in head wave

GHMHD9_2018_v42n6_378_f0014.png 이미지

Fig. 14 Pitch R.A.O of LNG bunkering barge in head wave

GHMHD9_2018_v42n6_378_f0015.png 이미지

Fig. 15 Added resistance in wave of LNG bunkering barge in head wave

GHMHD9_2018_v42n6_378_f0016.png 이미지

Fig. 16 Bow shape at water plane for sensitivity test

GHMHD9_2018_v42n6_378_f0017.png 이미지

Fig. 17 Sensivity test of added reistance according to the variation of the bow shape at water plane

GHMHD9_2018_v42n6_378_f0018.png 이미지

Fig. 18 Sensivity test of added reistance according to the variation of the radius of gyration

GHMHD9_2018_v42n6_378_f0019.png 이미지

Fig. 19 Heave R.A.O according to the variation of the radius of gyration

GHMHD9_2018_v42n6_378_f0020.png 이미지

Fig. 20 Pitch R.A.O according to the variation of the radius of gyration

Table 1 Particulars of LNG bunkering barge

GHMHD9_2018_v42n6_378_t0001.png 이미지

Table 2 Ship speeds of LNG bunkering barge

GHMHD9_2018_v42n6_378_t0002.png 이미지

Table 3 Resistance of LNG bunkering barge

GHMHD9_2018_v42n6_378_t0003.png 이미지

Table 4 Added resistance in irrgular waves of LNG bunkering barge

GHMHD9_2018_v42n6_378_t0004.png 이미지

Table 5 Total towing force of LNG bunkering barge

GHMHD9_2018_v42n6_378_t0005.png 이미지

Table 6 Added resistance of barge (KR, 2014)

GHMHD9_2018_v42n6_378_t0006.png 이미지

Table 7 Added resistance in irrgular waves according to the variation of the bow shape at water plane

GHMHD9_2018_v42n6_378_t0007.png 이미지

Table 8 Added resistance in irrgular waves according to the variation of the radius of gyration

GHMHD9_2018_v42n6_378_t0008.png 이미지

References

  1. Ahn, B. K. and Lee, S. M.(2010), "Study on the Added Resistance of Barge in Waves", Journal of Navigation and Port Research, Vol. 34, No. 10, pp. 741-746. https://doi.org/10.5394/KINPR.2010.34.10.741
  2. Bertram, V.(2011), Practical Ship Hydrodynamics, Butterworth-Heinemann, pp. 1-390.
  3. Gerritsma, J. and Beukelman, W.(1972), "Analysis of the Resistance Increase in Waves of a Fast Cargo Ship", International Shipbuilding Progress, Vol. 19, pp. 285-293. https://doi.org/10.3233/ISP-1972-1921701
  4. ITTC(2017), ITTC - Recommended Procedure 7.5 - 02 - 03 - 01.4, p. 15.
  5. Kajitani, H., Miyata, H., Ikehata, M., Tanaka, H., Adachi, H., Namimatsu, M. and Ogiwara, S.(1983), "The Summary of the Cooperative Experiment on Wigley Parabolic Model in Japan," Proc 2nd DTRC Workshop Ship Wave-Resist Comput, DTNSRDC, pp. 5-35.
  6. Kim, E. C., Choi, H. J. and Lee, S. G.(2013), "A Study on the Hull Resistance Prediction Methods of Barge Ship for Towing Force Calculation of Disabled Ships", Journal of the Korean Society for Marine Environment and Energy, Vol. 16, No. 3, pp. 211-216. https://doi.org/10.7846/JKOSMEE.2013.16.3.211
  7. Korean Register(2014), "Rules for the Towing Survey of Barges and Tugboats", p. 12.
  8. Kuroda, M., Tsujimoto, M., Fujiwara, M. and Takagi, M.(2008), "Investigation on Components of Added Resistance in Short Waves", Jounal of the Society of Naval Architects and Ocean Engineering, Vol. 8, pp. 171-176. https://doi.org/10.2534/jjasnaoe.8.171
  9. Nam, T. K., Jung, C. H. and Jung, J. S.(2012), "A Study on the Calculation of Resistance of the Ship to be Towed and Towline Tension", Journal of Navigation and Port Research, Vol. 36, No. 8, pp. 607-612. https://doi.org/10.5394/KINPR.2012.36.8.607
  10. Nam, T. K., Jung, C. H., Kim, J. M. and Choi, H. J.(2014), "A Study on the Calculation of Towing Force for the Disabled Ship and Its Experiments", Journal of Navigation and Port Research, Vol. 38, No. 5, pp. 463-470. https://doi.org/10.5394/KINPR.2014.38.5.463
  11. Oh, S. and Yang, J. H.(2015), "A Study on Estimation of Added Resistance in Waves using Modified Radiation Energy Method and Short Wave Correction Method", Journal of the Society of Navel Architects of Korea, Vol. 53, No. 1, pp. 62-68.
  12. Peng, H., Ni, S. and Qiu, W.(2014), "Wave Pattern and Resistance Prediction for Ships of Full Form", Ocean Engineering, Vol. 87, pp. 162-173. https://doi.org/10.1016/j.oceaneng.2014.06.004
  13. Salvesen, N., Tuck, E. O. and Faltisen, O.(1970), "Ship Motions and Sea Loads", Society of Naval Architects and Marine Engineers Transactions, Vol. 78, pp. 250-287.
  14. U. S. Navy(2002), "U. S. Navy Towing Manual", SL740-AA-MAN-010.
  15. Van Oortmerseen, G.(1971), "A Power Prediction Method and its Application to Small Ships", International Shipbuilding Progress, Vol. 12, pp. 397-415.