• 제목/요약/키워드: East China Sea.

검색결과 666건 처리시간 0.027초

제주도 서남방 동중국해역에서 하계 해양전선 형성과 수질특성 (Formation and Characteristics of Ocean Fronts at the East China Sea in Southwestern Sea Area from Jeju Island, Summer)

  • 허만영;최영찬
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제7권2호
    • /
    • pp.64-69
    • /
    • 2004
  • 제주도 서남쪽 동중국해 해역에서 하계인 8월에 형성되는 외양 전선역의 특성을 알아보기 위해 1999년 8월 하순에 관측이 이루어 졌는데, 그 결과를 해 보면 A라인에서는 경도 124°,위도 31°30'에 위치한 정점 A5에서 표층부터 수심 50m까지의 밀도가 21.4에서 22.1의 범위로 비교적 균등한 분포를 보임으로써 중국연안쪽의 22.0과 외양역의 22.0의 값과는 구분되는 전선역이 형성된다. 또한 B라인에서는 경도 124°,위도 33°에 위치한 정점 B,6에서 A라인에서와 마찬가지로 중국연안쪽과 외양역의 밀도 20.0과 구분되는 전선역이 형성된다. 이 결과는 동중국해 해역에서 양자강 담수의 유출로 인한 외양역(에서)의 전선역이 양자강에서 정동방향으로는 동경 124°,동북쪽으로는 동경 124°30'에서 형성되고 있음을 보여주는 것이다. 전선역에서의 영양염 특성은 전선역을 중심으로 중국 연안쪽에서 높고, 외양역에서 표층과 저층간의 농도차가 뚜렷하게 나타나는 반면에 전선역에서는 상하 층이 거의 균일하며 낮은 농도 분포를 보인다. 엽록소 a의 농도도(는) 전선역을 중심으로 중국 연안쪽과 외양역에서 높으나 전선역 중심에서는 낮은 분포를 보인다. 이상과 같은 결과로 볼 때 전선역이 형성되는 해역은 상하혼합과정에서 흐름의 증대로 인해 식물플랑크톤의 활성이 낮아지기 때문에 생산력이 낮아지는 것으로 생각된다. 또한 여름철 동중국해 해역에서 형성된 외양전선역은 중국대륙 담수의 유출량에 따라 전선역이 제주도까지 밀려올 가능성을 가지고 있는 것으로 판단된다.

  • PDF

기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가 (Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5))

  • 이소정;현유경;이상민;황승언;이조한;부경온
    • 대기
    • /
    • 제30권3호
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

위성자료를 이용한 한반도 주변 해상 대기표층의 열속 (Heat Fluxes in the Marine Atmospheric Surface Layer around the Korean Peninsula based on Satellite Data)

  • 홍기만;권병혁;김영섭
    • 수산해양교육연구
    • /
    • 제17권2호
    • /
    • pp.209-217
    • /
    • 2005
  • The energy balance of the surface layer of the water (the Yellow Sea, the East China Sea and the East Sea) was examined using satellite data. Variations of the net heat flux were similar to those of the latent heat flux which was more intensive than the sensible heat flux. The sensible heat flux was affected the difference between the sea surface temperature and the air temperature and was less important over the Yellow Sea. The maximum of the latent heat flux occurred in autumn when the air is drier and the wind is stronger. The shortwave radiation flux decreased with the latitude and depended on the cloudiness as the longwave radiation flux does. Annual variations of heat fluxes show that the latent heat flux was more intensive over the East China Sea than the East Sea and the Yellow Sea, while the spatial differences of the other heat fluxes were weak.

Evolution of suspended sediment patterns in the East China and Yellow Seas

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Gallegosi, Sonia
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.26-34
    • /
    • 2004
  • The evolution of intricate and striking patterns of suspended sediments (SS), which are created by certain physical dynamics in the East China and Yellow Seas, has been investigated using satellite ocean color imageries and vertical profiles of particle attenuation and backscattering coefficients. The structure of these patterns can reveal a great deal about the process underlying their formation. Sea surface temperature (SST) analyzed from the Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data were used to elucidate the physical factors responsible for the evolution of suspended sediment patterns in the East China Sea. The concomitant patterns of suspended sediments were tracked from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data. The detailed examination about these patterns gave birth to the definition of the evolution of suspended sediments (SS) into four stages: (1) Youth or Infant stage, (2) Younger stage, (3) Mature stage, and (4) Old stage. We describe about the three directional forces of the tidal currents, ocean warm currents and estuarine circulations that lead to occurrence of various stages of the evolution of suspended sediments that increase turbidity at high levels through out the water column of the inner and outer shelf areas during September to April. The occurrence of these four stages could be repeatedly observed. In contrast, vertical profiles of the particle attenuation ($c_{p}$) and backscattering ($b_{bp}$) coefficients displayed obvious patterns of the propagation of suspended sediment plume from the southwestern coastal sea that leads to eventual collision with the massive sediment plume originating from the Yangtze banks of the East China Sea.

A Model-generated Circulation in the Yellow Sea and the East China Sea: I. Depth-mean Flow Fields

  • Jung, Kyung-Tae;Kang, Hyoun-Woo;So, Jae-Kwi;Lee, Ho-Jin
    • Ocean and Polar Research
    • /
    • 제23권3호
    • /
    • pp.223-242
    • /
    • 2001
  • This paper presents the depth-mean monthly variation in the circulation of the Yellow Sea and the East China Sea computed using a robust diagnostic model. The mixed three-dimensional finite-difference Galerkin function model developed by Lee et at. (2000, 2001) has been extended to take into account baroclinic effects and then used to calculate the depth-mean flow fields as part of the results. In addition to M2 tide and oceanic flows previously considered, the model has been driven by the monthly mean wind stresses from Na and Seo (1998), the density gradient calculated based on by GDEM data set released by US Navy. Model results are very encouraging in that many of observed features including Jeju Cyclonic Gyre and frontal eddies along the shelfside of the Kuroshio main stream and west of Kyushu, are satisfactorily reproduced and are expected to be of value in interpreting observations in various oceanograhic disciplines.

  • PDF

Application of KOMPSAT/OSMI Data for Fisheries Oceanography in the East China Sea

  • Suh Young-Sang;Jang Lee-Hyun;Lee Na-Kyung;Kim Yong-Seung;Lee Sun-Gu;Yoo Hong-Rhyong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.557-561
    • /
    • 2004
  • A comparison was made between chlorophyll a from OSMI and SeaWiFS determined with the standard method during the NFRDI's research cruises. The simple algorithm for calibrating and validating of OSMI chlorophyll a as level 2 data in the East China Sea in specially winter season was made by relationship between the estimated chlorophyll a and the measured chlorophyll a in the field. We compared the distributions of OSMI chlorophyll a, sea surface temperature and zooplankton biomass, catch amounts of the Pacific mackerel in the East China Sea.

  • PDF

동중국해 북부해역에서 음파전달 특성의 시공간적 변동성 (Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea)

  • 박경주;피터추
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

Spring Phytoplankton Bloom in the Fronts of the East China Sea

  • Son, Seung-Hyun;Yoo, Sin-Jae;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • 제41권3호
    • /
    • pp.181-189
    • /
    • 2006
  • Frontal areas between warm and saline waters of the Kuroshio currents and colder and diluted waters of the East China Sea (ECS) influenced by the Changjiang River were identified from the satellite thermal imagery and hydrological data obtained from the Coastal Ocean Process Experiment (COPEX) cruise during the period between March $1^{st}$ and $10^{th}$, 1997. High chlorophyll concentrations appeared in the fronts of the East China Seas with the highest chlorophyll-a concentration in the southwestern area of Jeju Island (${\sim}2.9\;mg/m^3$) and the eastern area of the Changjiang River Mouth (${\sim}2.8\;mg/m^3$). Vertical structures of temperature, salinity and density were similar, showing the fronts between ECS and Kuroshio waters. The water column was well mixed in the shelf waters and was stratified around the fronts. It is inferred that the optimal condition for light utilization and nutrients induced both from the coastal and deep waters enhances the high phytoplankton productivity in the fronts of the ECS. In addition, the high chlorophyll-a in the fronts seems to have been associated with the water column stability as well.

동북아 해역 권원중첩수역 공동개발합의와 공동환경보호합의 도출 방안 (A Study on the Ways to Joint Marine Development and Joint Marine Environmental Protection in Northeast Asia)

  • 김기순
    • Strategy21
    • /
    • 통권37호
    • /
    • pp.193-241
    • /
    • 2015
  • China, Japan and Korea are the world's top 10 energy consumers, and so very interested in the development of seabed hydrocarbon resources in order to meet their energy demands. The East China Sea is the tri-junction area where three countries' entitlements on the maritime boundaries are overlapped. There are abundant oil reserves in the East China Sea, and therefore competitions among countries are growing to get control of them. Although these countries have concluded the bilateral agreements to jointly develop resources in the East China Sea, they do not function as well. Because joint development and management of seabed petroleum resources can lead to stable development system, and to lower possibility of legal and political disputes, the needs for joint development agreement among three countries are urgent. Meanwhile, Northeast Asian seas are semi-closed seas, which are geographically closed and vulnerable to marine pollution. Moreover there are a lot of nuclear power plants in coastal area, and seabed petroleum resources are being developed. So it is likely to occur nuclear and oil spill accidents. Fukushima nuclear disaster and Bohai Bay oil spill accident in 2011 are the cases to exhibit the potential of major marine pollution accidents in this area. It is anticipated that the risks become higher because power plants and offshore oil platforms are extending gradually. Therefore, the ways to seek the joint marine environmental protection agreement focused on regulation of nuclear power plant and offshore oil platform have to be considered. In this paper, we try to find the way to make joint development and joint environmental protection agreement in Northeast Asian seas. We concentrate on the measure to drive joint development of seabed petroleum deposits in East China Sea's overlap area, despite of maritime delimitation and territorial disputes, and we try to drive joint marine environmental protection system to respond to marine pollution and accidents due to offshore oil platform and nuclear power plants. Through these consideration, we seek solutions to deal with lack of energy, disputes of maritime territorial and boundary delimitation, and marine pollution in Northeast Asia.