• Title/Summary/Keyword: Earthwork Site

Search Result 63, Processing Time 0.023 seconds

A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control (토공사 지능형 다짐 품질관리를 위한 목표 CMV(Compaction Meter Value) 도출 방안에 관한 연구)

  • Choi, Changho;Jeong, Yeong-Hoon;Baek, Sung-Ha;Kim, Jin-Young;Kim, Namgyu;Cho, Jin-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.25-36
    • /
    • 2021
  • Recently, the intelligent compaction technology for quality control of earthworks has brought attention as a quality control standard for earthworks. In this study, intelligent compaction technology and earthwork quality control methods were investigated and earthwork quality control procedures using intelligent compaction technology were considered based on field tests. Through the field compaction test of the silty sand (SM) fill material, it was confirmed that CMV and bearing capcaity index from plate load tests increased as the number of compactions increased. Based on the field test data, the average CMV and quality control target CMV were derived. The target CMV (34.2) was calculated through the correlation with the bearing capacity index of the plate load test, and the target CMV (36.6) was calculated through the analysis of the CMV increase rate. In this paper, the on-site compaction quality management procedure and methodology using intelligent compaction technology were discussed, and an intelligent compaction quality management method was proposed to promote the applicability of the technology.

Prediction of Settlement for the Highly Plastic and Silty Soft Ground Contained of the Organic Deposits (유기질층을 포함한 고소성 실트질 연약지반의 침하 예측)

  • Yoo, Nam-Jae;Kim, Kyum;Yoo, Chang-Sun
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.91-98
    • /
    • 2011
  • In this thesis, from the results of settlement measurement performed at the site where embankment earthwork was carried out on the ground consisting of highly plastic and silty soft soils interlayered with organic deposits, various methods of predicting the embankment settlement such as Hoshino's method, Asaoka's method, hyperbolic method, ${\sqrt{s}}$ method and Monden's method were used to investigate their applicability and the inverse method of finding the soil parameter related to consolidation was used to predict the consolidation behavior in the future. It was confirmed that reliable prediction of consolidation behavior under various conditions could be done to estimate soil parameter related to consolidation such as the consolidation index and consolidation coefficient by the inverse method of comparing the measured settlement with the predicted value by the settlement prediction methods.

  • PDF

ENERGY SAVING EFFECT OF INTELLIGENT EXCAVATING SYSTEM

  • Jeonghwan Kim;Seungwoo Pi;Jongwon Seo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.209-212
    • /
    • 2013
  • Global warming and climate change is now an important issue in every industry. Construction is not an exception. Greenhouse Gases (GHG) are emitted by construction activities such as fuel usage in construction equipment and so on. In light of this, Intelligent Excavating System (IES), which is a robotic excavator with site modeling capability, is developed by a research consortium formed in Korea to improve productivity, quality, and safety of the traditional earthwork. This paper presents that energy saving effect of IES in comparison to traditional method. Through this review, we propose a research strategy to achieve carbon reduction goals in construction industry.

  • PDF

Design for the Kangwonland Ski Resort (강원랜드 스키장 설계)

  • 이준복
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.92-103
    • /
    • 2004
  • This design was submitted to an invited competition for the Ski Resort of Kangwon Land which was held by Kangwon Land Resort in August, 2003. The site is located at 1∼17 Gohan-ri Gohan-eup Jungsungun Kangwon-do and has an area of 5,000,000$m^2$. The objectives of this project were to revitalize the local economy of Sabuk, Gohan which is well Down for deserted coal mines, by creating a resort complex for family group users with an environmentally friendly ski facility. This design scheme addresses three areas of concerns: First, how to boost the local economy through the proposed ski resort. By limiting lodging facilities in the ski resort, we could induce more development in the nearby towns. In order to balance the economical benefit to towns of Sabuk and Gohan, we decided to have two separate ski base facilities in each town boundary. Second, how to encourage family-oriented use of the ski resort by designing user-friendly ski slope, especially for beginner skiers. We designed 50% more beginner-level ski slope compared to average ski resorts. Third, how to make environmentally-friendly ski resort by respecting the original land form. We minimized the damage to the natural environment by protecting valuable tree groves. Also, ski slopes are designed to reduce unnecessary earth movement. This was designed under the assumption that more valley-oriented slopes would result in less cutting and banking of earthwork; this assumption was verified in comparison with other ski resorts. It is expected that this desist would serve environmentally-friendly designs in ski slopes.

Productivity Analysis on Real-time Path Monitoring of Dumps (덤프의 이동경로 모니터링을 통한 생산성 분석)

  • Lee, Hak June;Kwon, Young Min;Yoon, Cha Woong;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.565-571
    • /
    • 2016
  • This study check the construction site and borrow pit location using GIS-based Open Global Map. Construction Equipment (Dump, Grader) utilizes the GPS (Global Positioning System) to gain equipment's real-time position, speed, altitude, using the data such as directions to perform real-time monitoring. The analysis of the productivity is completed through using the data, and the optimal number of equipment is calculated. It was found that the analysis results showed approximately 30% less cost compared to the actual design plan.

A Study on CO2 Emission Factor for Earth-Work Equipment Using C-FVM (C-FVM을 이용한 토공장비의 CO2 배출계수에 관한 연구)

  • Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.999-1006
    • /
    • 2014
  • $CO_2$ emission factor for earthwork equipment was made based on fuel consumption quantity using IPCC carbon emission factor. This is presented through the carbon emission estimating guideline each facilities by the Ministry of Land, Infrastructure and Transportation in 2011. However, this method has the defect which don't apply the various condition of site. Therefor it needs the new emission factor supplemented these defects. This study will tries to estimate $CO_2$ emission with the direct measurement method using concentration flow velocity measurement (C-FVM) for earth work equipment and present the new $CO_2$ emission factor for earth work equipment after compare with emission factor of the Ministry of Land, Infrastructure and Transportation.

Risk Factor Selaction and Safety Management Plan in the Underground Excavation Construction (지반굴착공사에서의 위험요인 선정과 안전관리방안 연구)

  • Won, Yu-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.31-37
    • /
    • 2019
  • When the foundation work of the underground part of the building structure or the excavation work of the civil engineering structure is carried out, there is the earthwork work by the inevitable process. As the economic situation continues to develop, construction in urban areas is becoming bigger and higher in scale due to the expansion of infrastructure and the rescue of urban dwellings in urban areas, and excavation of underground roads is inevitable. Excavation of the underground part may cause problems in the process difficulty and safety of the earthworks due to the complexity and various characteristics of the ground selected without consideration of the ground characteristics and site conditions. In order to complete the required facilities, it is necessary to secure the design and construction of the retaining walls. In order to complete the required construction, It is an important factor satisfying construction period and economical efficiency.

A Study on the Role of Wall Posts in Pit-Houses - In Bronze Age settlement sites in the Kyung-nam Province - (움집 벽주(壁柱)의 흙막이벽 기능에 관한 연구 - 경남지역 청동기 주거지를 중심으로 -)

  • Park, Won-Ho;Seo, Chi-Sang
    • Journal of architectural history
    • /
    • v.17 no.5
    • /
    • pp.7-22
    • /
    • 2008
  • The purpose of this study is to examine the function of wall posts in pit-houses in the Bronze Age, in the Kyung-nam Province. Wall posts were found as post-holes, created after wooden posts had decayed. In this research, the role of wall posts is newly defined from the perspective of a construction engineering. While existing studies in archaeology regard wall posts as sub-posts that support the roof of a pit-house, this study views wall posts as piles installed to support the soil wall, not as sub-posts. Based on the existing reports on excavation in prehistoric settlement sites by archaeologists, the study examines the remnants of the wall posts and remains after a fire. The main findings of this study are threefold. First, the wall posts were installed not as posts but as piles, cut sharply and hammered along the building lines of a pit-house. Second, wall piles were used to support the walls during earthwork, such as excavating and banking for low ground, mostly because a large amount of soil is often lost during the process. Third, wall piles were used as post piles of retaining walls that enabled the installation of transverse wall panels, which were used to prevent the soil loss.

  • PDF

A Case Study on the Application of Machine Guidance in Construction Field (공사 현장에서의 Machine Guidance 적용에 관한 사례연구)

  • Kim, Wanbong;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.721-731
    • /
    • 2018
  • Manpower in domestic construction sites is becoming more and more aging. Various methods have been devised to prevent productivity and quality deterioration of construction due to absence of skilled workers and difficulty in supplying manpower. Especially, many researchers study various methods such as Machine Guidance (MG) and Remote Machine Control to improve productivity and quality. Although many prior studies have been conducted since the advent of MG, There is lack of field test in a difficult site to stakeout. In this study, field test of MG excavator was carried out at difficult site to stakeout, and productivity analysis and quality evaluation were conducted. As a result of the analysis of productivity, the minimum value was 20.5%, the maximum value was 56.9%, and the average productivity in 4 days was 38.3% higher than the standard product. As a result of the analysis of quality, the horizontal error ${\pm}1cm$ and the vertical error ${\pm}2cm$ confirmed in the previous study were verified.

An Application of VRS-RTK Surveying in Construction Site (건설현장에서의 VRS-RTK측량 적용성 검토)

  • Kim, In-Seup;Joo, Hyun-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.625-631
    • /
    • 2008
  • Correct evaluation of cut and fill volume of soil is one of the most important factors which controls construction cost in enormous construction sites. To achieve accurate computation of soil volume in construction site precise surveying is required, however most of construction sites adopt existing optical surveying instruments such as Total Station. The problem when using these optical instruments in construction sites is that these instruments take longer time in data acquisition. Due to insufficiency of computation time accurate and precise observation cannot be accomplished with these equipments. As a result roughly calculated earthwork volume may cause arguments between contractors and supervisors in the matter of reduction or increasement of total construction cost. In this study VRS-RTK Surveying is adopted to perform fast and accurate in-situ surveying for rapid computation of soil volume. This VRS-RTK Surveying system is proved to have more accurate three dimensional coordinates with high density and better economical solution with less manpower.