• 제목/요약/키워드: Earthquake damage

검색결과 1,203건 처리시간 0.102초

January 24, 2020 Sivrice Earthquake and the response of the masonry Haci Yusuf Tas (New) mosque

  • Firat, Fatih K.;Ural, Ali;Kara, Mehmet E.
    • Earthquakes and Structures
    • /
    • 제22권4호
    • /
    • pp.331-343
    • /
    • 2022
  • Masonry structures are the most common structural systems that have been used almost all over the world from the earliest ages of history to the present day. These structural systems are often unfavorably affected by natural disasters such as earthquakes. The main reason for this is that they are built without sufficient engineering knowledge. On January 24, 2020, a severe earthquake occurred near the Sivrice District of Elazığ in eastern Turkey. According to the Turkish Directorate of Disaster and Emergency Management (AFAD), the magnitude of the earthquake was 6.8 and the focal depth 8 km. This earthquake caused damage and destruction to the masonry structures used extensively in the region. The Hacı Yusuf Taş (new) mosque in the Malatya city center, located about 64 km from the epicenter of the earthquake, was among the buildings affected by the earthquake. The mosque has smooth-cut stone walls and domes made of brick units. The main dome of the structure was severely damaged during the earthquake. In this study, information about the earthquake is first provided, and the damage to the mosque is then interpreted via photographs. In addition, two separate finite element models were produced, where the current state of mosque and solution suggestions are presented, and response spectrum analyses were carried out. According to these analyses and field observations, a buttress system to the main walls of the structure should be constructed in the direction which has little lateral rigidity.

Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings

  • Niharika Talyan;Pradeep K. Ramancharla
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.131-147
    • /
    • 2024
  • Damage caused by an earthquake depends on not just the intensity of an earthquake but also the region-specific construction practices. Past earthquakes in Asian countries have highlighted inadequate construction practices, which caused huge life and property losses, indicating the severe need to strengthen existing structures. Strengthening activities shall be proposed as per the proposed weighting factors, first at the higher weighted members to increase the capacity of the building immediately and thereafter, the other members. Through this study on gravity load-designed (GLD) buildings, relative weights are assigned to each storey and exterior and interior columns within a storey based on their contribution to the energy dissipation capacity of the building. The numerical study is conducted on mid-rise archetype GLD buildings, i.e., 4, 6, 8, and 10 stories with variable storey heights, in the high seismic zones. Non-linear static analysis is performed to compute weights based on energy dissipation capacities. The results obtained are verified with the non-linear time history analysis of 4 GLD buildings. It was observed that exterior columns have higher weightage in the energy dissipation capacity of the building than interior columns up to a certain building height. The damage in stories is distributed in a convex to concave parabolic shape from bottom to top as building height increases, and the maxima location of the parabola shifts from bottom to middle stories. Relative weighting factors are assigned as per the damage contribution. And the sequence for strengthening activities is proposed as per the computed weighting factors in descending order for regular RCC buildings. Therefore, proposals made in the study would increase the efficacy of strengthening activities.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

신경망을 이용한 구조물 접합부의 손상도 추정 (Structural Joint Damage Assessment using Neural Networks)

  • 방은영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.131-138
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks. The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

Damage Proxy Map (DPM) of the 2016 Gyeongju and 2017 Pohang Earthquakes Using Sentinel-1 Imagery

  • Nur, Arip Syaripudin;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.13-22
    • /
    • 2021
  • The ML 5.8 earthquake shocked Gyeongju, Korea, at 11:32:55 UTC on September 12, 2016. One year later, on the afternoon of November 15, 2017, the ML 5.4 earthquake occurred in Pohang, South Korea. The earthquakes injured many residents, damaged buildings, and affected the economy of Gyeongju and Pohang. The damage proxy maps (DPMs) were generated from Sentinel-1 synthetic aperture radar (SAR) imagery by comparing pre- and co-events interferometric coherences to identify anomalous changes that indicate damaged by the earthquakes. DPMs manage to detect coherence loss in residential and commercial areas in both Gyeongju and Pohang earthquakes. We found that our results show a good correlation with the Korea Meteorological Administration (KMA) report with Modified Mercalli Intensity (MMI) scale values of more than VII (seven). The color scale of Sentinel-1 DPMs indicates an increasingly significant change in the area covered by the pixel, delineating collapsed walls and roofs from the official report. The resulting maps can be used to assess the distribution of seismic damage after the Gyeongju and Pohang earthquakes and can also be used as inventory data of damaged buildings to map seismic vulnerability using machine learning in Gyeongju or Pohang.

국내 고층 비내진 철근콘크리트 벽식 아파트의 지진취약도 평가 (Seismic Fragility Assessment for Korean High-Rise Non-Seismic RC Shear Wall Apartment Buildings)

  • 전성하;신동현;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.293-303
    • /
    • 2020
  • Seismic fragility was assessed for non-seismic reinforced concrete shear walls in Korean high-rise apartment buildings in order to implement an earthquake damage prediction system. Seismic hazard was defined with an earthquake scenario, in which ground motion intensity was varied with respect to prescribed seismic center distances given an earthquake magnitude. Ground motion response spectra were computed using Korean ground motion attenuation equations to match accelerograms. Seismic fragility functions were developed using nonlinear static and dynamic analysis for comparison. Differences in seismic fragility between damage state criteria including inter-story drifts and the performance of individual structural members were investigated. The analyzed building had an exceptionally long period for the fundamental mode in the longitudinal direction and corresponding contribution of higher modes because of a prominently insufficient wall quantity in such direction. The results showed that nonlinear static analyses based on a single mode tend to underestimate structural damage. Moreover, detailed assessments of structural members are recommended for seismic fragility assessment of a relatively low performance level such as collapse prevention. On the other hand, inter-story drift is a more appropriate criterion for a relatively high performance level such as immediate occupancy.

GIS를 이용한 로스엔젤레스에 매설된 강관 손상 평가 (Loss Estimation of Steel Pipeline Damage in Los Angeles Using GIS)

  • Jeon, Sang-Soo
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.47-58
    • /
    • 2004
  • 강관은 Northridge 지진이 발생했을 당시 산사태가 일어나는 언덕이나 산악지역에 매설되어 있었다. 본 논문은 지리정보체계(GIS) 시스템에서 위치에 따라 강관을 서로 다른 유형별로 분류하고 정의하였다. 이 논문은 지반속도와 강관의 손상관계를 분석하고 Northridge 지진 시 발생한 산사태의 영향을 받았던 지역을 조사하였다. 하나의 주목할 만한 사실은 Northridge 지진 후 강관의 손상률이 다른 종류의 매설관, 특히 캐스트아이런(CI)보다 더 높았다는 것이다. Northridge 지진으로 인한 상대적으로 높은 강관의 손상률은 가장 큰 내부압력을 요하는 곳에서의 설치관례와 부식으로 인한 영향으로 해석될 수 있다.